نام کاربری یا پست الکترونیکی
رمز عبور

برگزاری دوره های آموزشی ttedit کنسرسیوم دانشگاهیان و متخصصان ایران - برگزاری دوره های آموزشی

پردازش تصاویر پزشکی www.ircas.ir

پردازش تصویر در پزشکی

دنياي مدرن امروز اين امكان را فراهم آورده تا تصاوير به صورت ديجيتال دريافت و ذخيره شوند. براي بدست آوردن نتايج بهتر گاهي لازم است تا بر روي اين تصاوير تغييراتي صورت گيرد اين تغييرات سه هدف عمده را دنبال مي كنند: پردازش، آناليز و درك تصوير. به همين دليل سيستم هاي كامپيوتري پردازش تصوير بوجود آمده است تا با سرعت و دقت بهتر بتوان اين اعمال را انجام داد. در اين سيستم ها ۴فرايند عمده اتفاق مي افتد: پيش پردازش، ارتقاء كيفيت تصوير، تبديل تصاوير و طبقه بندي و آناليز تصاوير. در اين روش ها با استفاده از علم رياضيات قواعدي براي شبيه سازي المان هاي بينائي انسان توسط كامپيوتر ايجاد شده است و يك جنبه آناليز تصاوير است كه براي منظورهاي خاصي كاربرد دارد. ديد كامپيوتري (Computer Vision) آناليز تصوير علمي است كه در شاخه هاي مختلف علم مانند پزشكي، مهندسي، تصوير برداري مولكولي، فضانوردي، امنيتي و . كاربرد دارد.تكنولوژي مدرن ديجيتال اين امكان را فراهم آورده كه سيگنال هاي چند بعدي را توسط سيستم هائي از مدارات ديجيتال ساده گرفته تا چندين كامپيوتر موازي دستكاري كرد.

هدف از اين دستكاري ها يكي از موارد زير است:

-پردازش تصوير:ورودي تصوير / خروجي تصوير

آناليز تصوير:ورودي تصوير / خروجي شامل تعدادي از اندازه گيري ها

درك تصوير:ورودي تصوير / خروجي شامل توصيف ادراكي تصوير.

با توجه به اين كه در دنياي امروز بيشتر حس كننده هاي از راه دور اطلاعات خود را به صورت ديجيتال ذخيره مي كنند، نهايتا تمام تفسيرها و آناليز تصاوير نيازمند مقداري پردازش ديجيتال است. پردازش ديجيتالي تصاوير ممكن است شامل انواع مختلفي از پردازش از جمله فرمت و اصلاح داده ها، بهينه سازي ديجيتال به منظور آسان سازي هر چه بيشتر تفسير و تحليل يا حتي طبقه بندي هدف ها و خصوصيات به صورت خودكار توسط كامپيوتر باشد. به منظور انجام اين اعمال لازم است تا داده ها به گونه هاي مناسب براي ذخيره بر روي فضاي فيزيكي موجود باشند.

شايع ترين اعمالپردازشي كه در سيستم هاي آناليز تصاوير استفاده مي شود را مي توان در ۴گروه زير دسته بندي كرد:

- پيش پردازش (Preprocessing)

اين دسته از پردازش ها شامل آن هايي است كه معمولا قبل از آناليز اصلي تصاوير و استخراج اطلاعات لازمند و عموما تحت عنوان تصحيح هاي راديومتريك يا ژئومتريك گروه بندي مي شوند. تصحيح هاي راديومتريك شامل اصلاح داده ها از نظر بي نظمي هاي گيرنده ها و نويز هاي ناخواسته هستند و هدف آن ها بدست آوردن تصوير دقيقي است كه از تابش اشعه به گيرنده ها ايجاد مي شود. تصحيح هاي ژئومتريك به منظور اصلاح اعوجاج هاي تصوير و تبديل آن به مختصات حقيقي بر روي سطح زمين است.

-افزايش كيفيت تصوير (Image Enhancement)

اين دسته از پردازش ها صرفا به منظور بهبود و افزايش وضوح تصوير هستند تا بتوان تفسير بهتري را از تصاوير بدست آورد.

- تبديل تصوير (Image Transformation)

اين اعمال از جهت نظري شبيه گروه قبل است ولي بر خلاف اين گروه كه تنها بر روي يك كانال داده اعمال مي شود، اين گروه شامل پردازش تركيبي بر روي داده هاي بدست آمده از چندين باند طيفي مي شود. اعمال رياضي (جمع، تفريق، ضرب، تقسيم) اعمال مي شوند تا باند هاي اوليه را تركيب كرده و آن ها را به تصاوير جديدي كه وضوح بيشتري داشته و يا خصوصيات ويژه اي را بهتر نمايان مي كنند تبديل نمايد.

- طبقه بندي و آناليز تصوير

هدف از اعمال اين بخش از پردازش ها، طبقه بندي و مشخص سازي پيكسل ها در داده است. طبقه بندي معمولا بر روي گروه هاي داده چند كانالي اعمال مي شود و اين عمل هر پيكسل تصوير را بر اساس خصوصيات آماري مقادير روشنائي آن ها به يك گروه يا تم اختصاص مي دهد. براي انجام اين پردازش دو روش عمده، با سرپرست و بدون سرپرست وجود دارد.(دوره تعمیرات تجهیزات دندانپزشکی)

تعاريف

تعريف تصوير در دنياي واقعي شامل تابعي از دو متغير حقيقي است مثل I(x,y) كه در آن I شدت تصوير (مثلا ميزان روشنائي) در مكان حقيقي (x,y) است. يك تصوير ممكن است شامل تعدادي زير تصوير باشد كه گاهي به آنها نواحي مورد توجه (Regions-Of-Interest) يا (ROI)و يا نواحي گفته مي شود. اين نظريه مشخص مي كند كه تصاوير معمولا شامل مجموعه هائي از اشياء است كه هر كدام پايه يك ناحيه را تشكيل مي دهد. در يك سيستم پردازش تصوير مناسب بايد بتوان روي نواحي مختلف اعمال متفاوتي انجام داد مثلا در يك ناحيه تاري ناشي از حركت را كاهش داد و در همان زمان در ناحيه ديگر كيفيت رنگ را تغيير داد.

شدت ها در تصاوير يا به صورت اعداد حقيقي و يا به صورت اعداد صحيح است. حالت دوم ناشي از Quantization است كه شدت ها را از حالت پيوسته به حالت مجزا تبديل مي كند. در برخي فرايندهاي تشكيل تصوير از شمارش فوتون استفاده مي شود كه در اين صورتquantization به طور ذاتي در فرايند وجود دارد. در برخي تصوير برداري ها مانند MRIاعداد به صورت حقيقي است. مورفومتري به معناي توضيح كمي يك ساختار است.استريولوژي در واقع استخراج و تفسير اطلاعات سه بعدي از تصاوير دو بعدي است. پردازش تصوير به معناي ارتقاء كامپيو تري تصاوير ديجيتال است (يعني استفاده از انواع فيلترها براي حذف نويز، بهينه سازي كنتراست و (….

آناليز كامپيوتري تصاوير استخراج كمي و يا كيفي خصوصيات تصاوير ديجيتال دوبعدي و يا سه بعدي است. به عنوان مثال آناليز تصاوير دو بعدي در ديد كامپيوتري و آناليز تصاوير سه بعدي در تصوير برداري پزشكي كاربرد دارد. آناليز تصوير در واقع استخراج اطلاعات از درون تصوير است مثل استخراج انواع سطوح، محيط ها و طول ها و

تصوير برداري ديجيتال

تصویر برداری دیجیتال پزشکی کنسرسیوم ایرکاس

يك تصوير ديجيتال [I[m,n در يك فضاي گسسته دو بعدي در واقع از يك تصوير دو بعدي مشتق (I(x,y در يك فضاي پيوسته دو بعدي توسط فرايند نمونه برداري به نام digitization مي شود.تصوير دو بعدي به n رديف و m ستون تقسيم مي شود (شكل۱).

تصوير شماره۱به ۱۶رديف و ۱۶ستون تقسيم شده كه هر پيكسل آن گرد شده مقدار روشنائي به نزديك ترين عدد صحيح است.

دقت تصوير به صورت پيكسل بر اينچ اندازه گيري مي شود. يك تصوير با دقت ۱۰۰۰۰PPI در يك اينچ مربع داراي پيكسل است. براي انجام آناليز تصوير لازم است ويژگي هاي مورد نظر به گونه اي استخراج شوند تا اندازه گيري ها بر روي تصاوير پيكسلي شده انجام نشود.

دقت پيكسلي يا عمق پيكسل به معني تعداد بيت اطلاعات به ازاء هر پيكسل است. عمق پيكسل مشخص مي كند چه مقدار اطلاعات مربوط به رنگ و يا طيف خاكستري براي هر پيكسل امكان پذير است. در تصاوير باينري عمق پيكسل۱ (روشن خاموش) است. اين ها تصاوير سفيد وسياه است. براي آناليز تصاوير طيف خاكستري حداقل عمق پيكسل لازم ۸بيت است. براي تصاوير رنگي حداقل عمق ۲۴بيت لازم است.قانون نيكوئيست بيان مي كند كه اگر مي خو اهيم به صورت ديجيتالي دقت جزئيات حفظ شود بايد dpi تصويربرداري دو برابر دقت ويژگي مورد نظر باشد.

المان هاي تفسير توسط چشم

همان طور كه قبلا گفته شد، آناليز تصوير شامل شناسائي اهداف متفاوتي درون تصوير است. اين اهداف ممكن است ويژگي هاي محيطي يا مصنوعي باشند كه از نقاط، خطوط يا نواحي تشكيل شده اند.

چه چيز تفسير تصاوير را نسبت به تفسير چشمي روزمره مشكل مي سازد؟

در تصاوير دو بعدي فرد حس مربوط به عمق را از دست مي دهد مگر آن كه بتواند آنرا به صورت استريوسكوپي ببيند تا عمق آن شبيه سازي شود. در واقع در ديد استريوسكوپي تفسير بسيار آسان تر خواهد بود. يك پرسپكتيو غير معمول اگر با جزئيات كم و اندازه بسيار نامتعارف ادغام شود مي تواند آشنا ترين اشياء را غير قابل تشخيص كند. همچنين چشم انسان در محدوده مشخصي از طول موج مي تواند عمل كند و تصوير برداري خارج از اين محدوده مي تواند جهت درك بسيار مشكل باشد.

تشخيص هدف ها كليد استخراج اطلاعات و تفسير تصوير است. مشاهده اختلاف بين هدف ها و زمينه آن ها شامل مقايسه از نظر تعدادي از المان هاي بينائي يعني تون، شكل، اندازه، الگو، سايه و ارتباط است. تفسير بينائي روزمره انسان توسط استفاده از اين المان ها صورت مي گيرد. اكنون به توضيح هر يك از اين موارد پرداخته مي شود:

تون

به روشنائي يا رنگ نسبي اشياء در تصوير اتلاق مي شود. عموما، تون مهمترين المان براي تمايز بين هدف ها يا ويژگي هاي مختلف است. تغييرات تون مي تواند باعث تمايز المان هاي شكل، بافت و الگو شود.

شكل

بيان كننده فرم، ساختار و محيط اشياء است. شكل مي تواند در تفسير بسيار متمايز كننده باشد. اشكال طبيعي بيشتر شكل نامنظم و ساخته هاي دست بشر بيشتر لبه هاي مستقيم دارد.

اندازه

اندازه تصاوير تابعي است از بزرگنمائي تصوير. بسيار مهم است كه در تفسير تصاوير اشياء از نظر اندازه با اشياء ذيگر و با اندازه واقعي تصوير مقايسه شوند.

الگو

الگو بيان كننده ترتيب قرار گرفتن فضائي اشياء ديدني است. به طور مشخص تكرار منظم تون ها و بافت هاي مشابه مي تواند بيان كننده يك الگو باشد.

بافت

به ترتيب و تكرار تغييرات تون در نواحي خاصي از تصوير اطلاق مي شود. در بافت هاي خشن تغييرات تون خاكستري در يك ناحيه كوچك به ميزان زياد به چشم مي خورد ولي در بافت هاي ملايم تغييرات تون خاكستري بسيار كم است.

سايه

سايه نيز مي تواند در تفسير تصاوير بسيار كمك كننده باشد. سايه مي تواند ارتفاع نسبي اشياء را مشخص سازد. البته گاهي سايه ها مي توانند تشخيص اهداف را مشكل سازند زيرا اهدافي كه در درون سايه قرار دارند كمتر قابل تشخيص خواهند بود. سايه ها براي تشخيص توپوگرافي نيز مي توانند كمك كننده باشند.

ارتباط

ارتباط، رابطه بين هدف و ديگر اشيائ قابل تشخيص در نزديكي آن را در نظر مي گيرد. اين مساله مي تواند به تشخيص مواردي كه اين رابطه شناخته شده است كمك كند. مثلا در يك تصوير ماهواره اي، ساختمان هائي كه نزديك مسير هاي اصلي ديده مي شود به احتمال زياد ساختمان هاي تجاري است.

طبقه بندي اشيا توسط انسان

انسان براي دسته بندي اشياء از روش شناخت الگو بر اساس قرار گرفتن در معرض چندين نمونه استفاده مي كند. انسان هميشه يك الگوي ذهني از اشياء درست مي كند كه اين الگو با ديگر اطلاعات مربوط به شيء به همراه مقداري عينيت بخشي اين قابليت را مي دهد كه انسان سريعا شيء را دسته بندي كند ولي هميشه يك المان ذهني وجود دارد.

انسان به كنتراست حساس است. هميشه اشيائي كه كنتراست بالا دارند بيشتر در ذهن خود را نشان مي دهند.

انسان به پرسپكتيو و تغييرات عمق تصوير حساس است.

انسان به جهت تابش نور حساس است و ترجيح مي دهد كه نور از بالا بتابد.

انسان هميشه دوست دارد چيزي را در تصوير ببيند كه انتظار آن را دارد.

پردازش تصویر (Image processing) و پزشکی

پردازش تصویر در پزشکی کنسرسیوم ایرکاس تصاویر

پردازش تصوير عملياتي است كه طي آن ويژگي هاي تصوير بارزتر مي شوند و قبل از آناليز تصوير انجام مي گيرد. پردازش تصوير بر روي پيكسل ها يعني كوچك ترين اجزاي تصوير انجام مي شود. الگوريتم هاي مختلفي كه در پردازش تصوير استفاده مي شوند عمليات خود را بر روي گروهي از پيكسل ها انجام مي دهند. به اين گروه ها كرنل (Kernel) گفته مي شود.در شكل (۲) يك سري از كرنل هاي ۳×۳خود را بر روي پيكسل وسط يا سياه رنگ، با استفاده از اطلاعات موجود در پيكسل هاي همسايه اعمال مي كنند.

در كرنل A اطلاعات تمام پيكسل هاي همسايه در عمليات پردازش نقش دارد . در كرنل B تنها اطلاعات همسايه هاي با ارزش (همسايه هاي عمودي و افقي) در نظر گرفته مي شود. در كرنل C اطلاعات پيكسل هاي همسايه ضعيف يعني همسايه هاي مورب مورد استفاده قرار مي گيرد. انواع متفاوت اين كرنل ها مبناي پردازش ديجيتالي تصاوير است.

پيش پردازش (Preprocessing)

عمليات پيش پردازش كه گاهي بازيابي يا اصلاح تصوير نيز ناميده مي شود به منظور اصلاح اعوجاج هاي راديومتريك يا ژئومتريك مربوط به سنسور و سكو به كار برده مي شود. اصلاحات راديومتريك به دليل تغييرات در هنگام روشن سازي صحنه و جهت هاي تصوير برداري، شرايط محيطي و نويز گيرنده است. اين موارد و ابسته به سنسور، سكو و شرايط تصوير برداري است. تغيير داده ها به اشعه هاي اصلي تشكيل دهنده تصوير براي آسان سازي مقايسه بين داده ها مطلوب است.

تغييرات در نورپردازي و اشكالات هندسي را مي توان با استفاده از مدل كردن وضعيت هندسي و فاصله بين شيئ و گيرنده و منبع نور اصلاح كرد. اين عمل نياز است تا بتوان تصاوير بدست آمده در شرايط و زمان ها و با گيرنده هاي مختلف را با يكديگر مقايسه كرد و يا تصاوير بدست آمده از يك گيرنده را به صورت موزائيك در كنار يكديگر قرار داد و نتيجه مطلوبي بدست آورد.

در تصوير برداري پزشكي اختلالات عمده شامل نويز ناشي از دريافت با فركانس بالا، روشنائي متفاوت در زمينه و مشكلات ناشي از جهت گيري دور مشاهده مي شود. به همين دليل پيش پردازش ها به طور سيستماتيك بر روي تمام تصاوير گرفته شده از يك دستگاه اعمال مي شوند. به همين دليل اين پردازش ها معمولا وابسته به دستگاه هستند و بايد سريع و موثر باشند. هنگامي كه خصوصيات فضائي يا روشنائي نويز ها مشخص باشد از متدهاي فوتوگرامتريك استفاده مي شود.

وقتي خصوصيات طيفي نويز ها مشخص باشد از فيلتر ها استفاده مي شود. فيلتر هاي پايين گذر براي حذف نويز ها، فيلتر هاي ميان گذر براي نويز هاي پريوديك و فيلتر هاي بالا گذر براي تيز كردن تصاوير به كار برده مي شوند. يك گروه الگوريتميك از فيلتر ها هنگامي كه يك شئ خاص مورد نظر باشد به كار برده مي شوند. اين در صورتي است كه نوع هاي ديگري از همان شيء با زوايا و ديگر خصوصيات متفاوت وجود داشته باشد. بايد توجه داشت كه مرحله پيش پردازش نبايد به گونه اي باشد كه تصوير اصلي را آنقدر تغيير دهد كه بيننده دچار خطاي تشخيص شود.

ارتقاي تصوير(Image Enhancement)

ارتقا کیفیت تصویر توسط دستكاری هيستوگرام

پرداز تصاویر در پزشکی ارتقا کیفیت تصویر توسط دستكاری هيستوگرام

ارتقاء تصوير به منظور آسان سازي تفسير بينائي و درك تصوير به كار برده مي شود. مزيت تصاوير ديجيتال در اين است كه مي توان يك نقطه را دستكاري كرد. حتي بعد از پيش پردازش و اصلاح خطاهاي ناشي از گيرنده و جهت، ممكن است تصوير براي بيننده وضوح كافي نداشته باشد. اگر اهداف مختلف داراي طيف هاي مختلفي از روشنائي است پردازش هاي اوليه نمي تواند همه آنها را به طور مطلوب نشان دهد. به همين دليل براي هر تصوير بايد تنظيم خاصي از نظر روشنائي و پراكندگي آن وجود داشته باشد.

در تصوير برداري روزمره تنها از ظرفيت كمي از قابليت تصوير برداري ديجيتال مثلا ۸بيت استفاده مي شود. ارتقاي كنتراست بدين معنا است كه از ظرفيت بيشتري براي نشان دادن كنتراست استفاده شود و اشياي در تصوير مشخص تر باشند. براي درك بهتر ارتقاي كنتراست بايد هيستوگرام را شناخت. يك هيستوگرام يك نمودار گرا فيكي است كه مقادير روشنائي كه يك ها تصوير ر ا مي سازند مشخص مي سازد. مقادير روشنائي در محور x ها و ميزان تكرار يا فركانس هركدام از اين مقادير در تصوير روي محور yها نشان داده مي شود. شکل(۳)، يک تصوير نمونه به همراه هيستوگرام آن را نشان مي دهد.

مهندسی پزشکی ایران کشیدگی خطی کنتراست

با استفاده از دستكاري محدوده مقادير ديجيتال يك تصوير، كه در هيستوگرام آن نشان داده شده، مي توان تصوير را بهبود داد. روش هاي مختلفي براي ارتقاي كنتراست وجود دارد. ساده ترين روش كشيدن خطي كنتراست است .بدين صورت كه حد بالا و پايين كنتراست از روي هيستوگرام مشخص مي شود سپس با استفاده از يك تبديل، محدوده كنتراست كشيده مي شود تا كل محدوده ممكن را پر مي كند.شکل(۴) نحوه انجام اين کار را نشان مي دهد. نتيجه اعمال اين روش در شکل(۵) نشان داده شده است.

مهندسی پزشکی کنسرسیوم ایرکاس

اين عمل هميشه منجر به نتيجه مناسب نمي شود به خصوص در مواردي كه محدوده ورودي به طور يكنواخت پراكنده نباشد. در اين موارد از روش كشيدگي هيستوگرام تعديل شده (Histogram Equalized stretch) استفاده مي شود. در اين روش محدوده بيشتري به مقاديري كه فركانس بالاتري دارند اختصاص مي يابد. در اين روش جزئيات دقيق تري از نواحي كه بيشتر تكرار شده است در مقايسه با نواحي كه كمتر تكرار شده نشان داده مي شود. در برخي موارد ممكن است فقط در يك محدوده خاص از هيستوگرام بخواهيم تصوير را ارتقا دهيم در مواردي كه هيستوگرام در يك طرف طيف يا در وسط طيف جمع شده باشد و تصوير تيره يا روشن به نظز برسد مي توان از روش Histogram sliding استفاده كرد. در اين روش يك مقدار ثابت به كل پيكسل ها اضافه و يا از آن ها كم مي شود.

بايد دقت داشت كه اين روش ها رزولوشن تصوير را بالا نمي برند بلكه ويژگي هاي مورد نظر در تصوير را بهبود مي دهند. گاما (Gamma) در يك هيستوگرام، همان شيب نمودار است و به معني نسبت تغييرات خروجي به تغييرات ورودي است. مقدار گاماي ۱بيانگر نسبت ۱:۱خروجي به ورودي است و نياز به اصلاح ندارد. در برخي برنامه ها يك تابع گاما يك تابع جستجوكننده در جدول استفاده مي كندتا خطاهاي ايجاد شده در تصوير را اصلاح كند.

حذف نويز

در مواردي كه تصوير در نور كم گرفته شود نسبت نويز به سيگنال بالا مي رود. يك روش براي كاهش اين نويز استفاده از ميانگين گيري است به اين صورت كه فريم هاي متعددي از تصوير گرفته مي شود و ميانگين آن ها به عنوان تصوير نهائي در نظر گرفته مي شود كه حاوي اطلاعات بيشتر و نويز كم تر است البته استفاده از اين فيلترها مقداري تاري در تصوير ايجاد مي كند. استفاده از آن ها در تصاوير دقت بالا توصيه نمي شود. فيلتر كردن فضائي در مواردي به كار مي رود كه بخواهيم ويژگي هائي از تصوير را بر اساس تكرار فضائي آن ها بهبود يا کاهش دهيم. فركانس فضائي با بافت تصوير مرتبط است و اشاره دارد به ميزان تكرار تغييرات تون در تصوير. نواحي خشن كه تغييرات تون در آن ها زياد است فركانس فضائي بالاتر نسبت به نواحي ملايم دارند. در يك روش يك پنجره شامل ابعادي كوچك بر روي تصوير پيكسل به پيكسل حركت مي كند و بر اساس مقادير پيكسل ها با استفاده از روابط رياضي مقداري محاسبه و به جاي پيكسل مركز قرار داده مي شود. اين عمل بر روي كل تصوير انجام مي شود. با اين روش نيز مي توان با استفاده از فيلتر، تصوير را ارتقا داد.

فيلتر پايين گذر به منظور تاكيد بر نواحي بزرگ و هوموژن داراي تون يكسان و كاهش جزئيات كوچك تر به كار مي رود. پس تصوير را هموارتر مي كنند. اين فيلتر در تصوير برداري رادار استفاده مي شود. فيلتر بالا گذر عكس آن عمل مي كند و باعث افزايش جزئيات و تيز شدن تصوير مي شود.

فيلترهاي تشخيص لبه يا جهت دار به منظور شناسائي ويژگي هاي خطي طراحي شده اند. اين فيلترها به منظور تشخيص ويژگي هائي كه در يك جهت خاص قرار داده شده اند نيز هستند.

فيلتر هاي ميانه كمترين ميزان بلوري را ايجاد مي كند .اين فيلتر ها با استفاده از يك كرنل ۳×۳يا ۵×۵، روشنائي پيكسل وسط يا هدف را بر اساس ميانه روشنائي پيكسل هاي همسايه تغيير مي دهد. در نتيجه يك تركيب از روشنائي در يك محدوده به وجود مي آيد. اين فيلتر پيكسل هائي كه روشنائي بسيار متفاوتي با همسايه ها داشته باشند را در نظر نمي گيرد. شکل(۵)، نتيجه اعمال فيلتر ميانه را نشان مي دهد.

نويزهاي پريوديك در يك تصوير را عمدتا مي توان با استفاده از يك تبديل فوريه دو بعدي حذف كرد. تبديل فوريه تصوير مي تواند نويز پريوديك را مشخص سازد. اين نويز را مي توان از تصوير حذف كرد و با انجام عكس تبديل فوريه بر روي تصوير، تصوير بدون نويز را بدست آورد. شكل (۶)، حذف نويز پريوديك با استفاده از تبديل فوريه سريع (Fast Fourier Transform-FFT) را نشان مي دهد.

کنسرسیوم ایرکاس پردازش تصاویر

بهبود لبه ها

در اين روش ها وضوح تصوير كاهش مي يابد و لبه هاي موجود در آن بهبود مي يابند. اين روش ها همانند استفاده از فيلتر بالا گذر هستند ولي با اين تفاوت كه به لبه ها اهميت ويژه اي مي دهند نه به اختلاف كنتراست دو قسمت از تصوير. يكي از معروف ترين آن ها، بهبود لبه لاپلاسين است كه بدون توجه به جهت لبه ها آن ها را مشخص تر مي سازد (شکل7)

کنسرسیوم ایرکا پردازش تصاویر در پزشکی1

استفاده از رنگ مجازي

بينائي انسان به رنگ حساس تر است. استفاده از رنگ مجازي در تصاوير طيف خاكستري مي تواند برخي جنبه هاي تصوير را نمايان تر سازد (شکل8).

استفاده از رنگ مجازي.پردازش تصاویر پزشکی

تبديل تصاوير(Image Transformation)

عمدتا تبديل تصاوير نيازمند دستكاري چندين باند داده است چه از يك تصوير چند طيفي يا از دو يا بيشتر تصوير از يك ناحيه كه در زمان هاي مختلفي گرفته شده است (مولتي تمپورال). تبديلات پايه شامل اعمال عملگر هاي جبري بر روي داده ها است. كم كردن تصاوير از يكديگر معمولا براي مواقعي كه مي خواهيم بدانيم در طول زمان چه تغييراتي رخ داده است بكار برده مي شود (کاربرد در آنژيوگرافي). ابتدا دو تصوير كه از نظر خطاهاي هندسي تثبيت شده اند، مقادير پيكسل هايشان از يكديگر كم مي شود و يك مقدار ثابت به پيكسل هاي تصوير حاصله اضافه مي شود (مثلا عدد ۱۲۰). تصوير نهائي نتيجه خوبي از تغييرات است. در چنين تصويري نقاطي كه اختلاف كمي در دو تصوير اوليه دارند داراي روشنائي ۱۲۰مي شوند ولي نقاطي كه اختلاف بيشتري دارند پس از تبديل داراي روشنائي بيشتر يا كمتر از ۱۲۰خواهند بود.شکل(۹)، نتيجه اجراي اين روش را نشان مي دهد.

کنسرسیوم ایرکاس تبدیل تصاویر- تصاویر پزکی

تقسيم كردن تصاوير يا Spectral rationing يكي از متداول ترين تبديلات بر روي تصاوير است. اين روش براي روشن ساختن تغييرات كوچكي كه در طيف پوششي سطح هاي مختلف وجود دارد، به كار برده مي شود.يكي از محاسن استفاده از اين روش اين است كه به دليل اين كه فرد به مقادير به صورت نسبي نگاه مي کند و نه مقادير مطلق روشنائي، تغييرات نور پردازي ناشي از اثرات توپوگرافيك خود را كمتر نشان مي دهند.

باند هاي متفاوت از داده هاي چند طيفي معمولا به شدت با يكديگر مرتبطند و بنابراين اطلاعات مشابهي را در خود دارند. تكنيك هاي تبديل تصوير كه ويژگي هاي آماري داده هاي چند طيفي را پردازش مي كنند به منظور كاهش اين افزونگي داده استفاده مي شوند. يكي از اين تكنيك ها آناليز اجزائ اصلي (Principal Components Analysis) است. هدف اين تبديل كاهش تعداد باندها و فشرده سازي اطلاعات باندهاي اوليه در تعداد كمتري از باندها است.باندهاي جديد بدست آمدهcomponent نام دارند و حاوي بيشترين اطلاعات در كمترين تعداد باند هستند.

آناليز تصاوير (Image Analysis)

پس از اين كه تصاوير از نظر كيفي بهبو يافتند در مرحله بعد بايد ويژگي هاي آن ها مشخص و استخراج شوند. بيشتر داده هاي تصاوير ممكن است به نواحي با محيط بسته، نقاط و خط ها تقسيم و دسته بندي شوند. براي شناسائي اشياء بايد بتوان آن ها را از زمينه متمايز و جدا كرد. معمولا بهتر است تصوير طيف خاكستري به تصوير باينري (سياه و سفيد) تبديل شود. تكنيك هائي مثل تقسيم تصوير و شناسائي لبه بر روي تصاوير باينري بهتر اجرا مي شود ولي بر روي تصاوير طيف خاكستري يا رنگي نيز گاهي اعمال مي شوند. بيشترين پارامتر هائي كه در آناليز تصوير اندازه گيري مي شوند شامل موارد زير است:

طول: اندازه يك خط كشيده شده

سطح: سطح پيكسلهاي درون يك شيء

محيط: فاصله اطراف محيط يك شيء در واحد پيكسل

نسبت سطح به محيط: مقداري براي اندازه گيري ميزان گرد بودن يا فشرده بودن. مقدار آن بين صفر و يک است.

محور اصلي:محوري كه بزرگ ترين خط را در درون شيء تشكيل مي دهد.

محور فرعي: بزرگ ترين محوري كه مي توان در درون شيء عمود بر محور اصلي در نظر گرفت.

تعداد حفره ها:تعداد حفره هايي كه در درون شيء موجود است.

بايد توجه داشت كه هيچ روش قطعه سازي تصويري وجود ندارد كه بر روي تمام تصاوير عمل كند. همچنين هيچ روش قطعه سازي كامل نيست.

تعيين آستانه( Thresholding)

ساده ترين روش بر اي قطعه كردن تصوير استفاده از تكنيك هاي تعيين آستانه است. تعيين آستانه مي تواند بر روي تصاوير مونوكروم يا رنگي انجام شود. در موارد مونوكروم، پيكسل هاي يك محدوده خاص از طيف خاكستري بر روي مانيتور نمايش داده مي شوند و آناليز بر روي آن ها صورت مي گيرد.سوال اساسي در اين روش اين است كه آستانه را چگونه بايد مشخص كرد؟ با اين كه جوابي براي اين سوال وجود ندارد كه بر روي تمام تصاوير عمل كند ولي راه هائي براي اين كار وجود دارد:

آستانه ثابت (Fixed threshold)

يك روش انتخاب آستانه بدون توجه به داده هاي تصوير است. اگر مشخص باشد كه تصوير مورد نظر داراي كنتراست بالاست و اشياء بسيار تيره است و زمينه يكنواخت و روشن است، در اين صورت يك آستانه كنتراست ۱۲۸در محدوده ۰تا ۲۵۵مي تواند دقيق باشد. منظور از دقت اين است كه پيكسل هاي اشتباه انتخاب شده حداقل باشد.

آستانه هاي به دست آمده از هيستوگرام(Histogram-derived thresholds)

در بيشتر موارد آستانه از هيستوگرام روشنائي تصوير يا ناحيه مورد نظر جهت تقسيم كردن انتخاب مي شود. تعدادي از روش هاي تعيين آستانه جهت تعيين خودکار آستانه كه از هيستوگرام طيف خاكستري شروع مي شود ارائه شده اند. تعدادي از آن ها در اين قسمت ارائه مي شود. در بيشتر اين الگوريتم ها، ساده سازي داده هاي هيستوگرام خام مفيد واقع مي شود ولي اين ساده سازي نبايد به گونه اي باشد كه پيک هاي هيستوگرام را جابجا كند. اين مساله منجر به استفاده از يك الگوريتم ساده سازي فاز صفر مي شود و مقدار W مي تواند ۳يا ۵باشد.

در شكل ۱۰پيكسل هاي زير آستانه به عنوان پيكسل هاي شيء و پيكسل هاي بالاي آستانه به عنوان پيكسل هاي زمينه در نظر گرفته مي شوند.

پردازش تصاویر پزشکی کم کردن تصاویر

الگوريتم ايزو ديتا

اين تكنيك تكرار شونده براي انتخاب آستانه توسط ريدلر و كالوارد ايجاد شد. در ابتدا هيستوگرام با استفاده از يك مقدار آستانه به دو قسمت تقسيم مي شود. اين آستانه معمولا نصف مقادير ممكن مي تواند باشد. ميانگين مقادير خاكستري نمونه ۰، f و m مربوط به پيكسل هاي foreground و ميانگين مقادير خاكستري نمونه۰، b و m مربوط به زمينه محاسبه مي شوند. يك مقدار آستانه جديد به نام teta1 به صورت ميانگين دو مقدار بدست آمده محاسبه مي شود. اين فرايند بر اساس مقادير جديد به طور مرتب تكرار مي شود تا زماني كه مقدار آستانه ديگر تغييري نكند.

الگوريتم Background – symmetry

اين روش در نظر مي گيرد كه قله مشخص و واضح براي زمينه وجود دارد كه نسبت به ماكسيمم حالت قرينه دارد. در اين تكنيك نيز بهتر است از روش ساده سازي استفاده شود. تعيين قله ماكسيمم (maxp) توسط جستجوي بيشترين مقدار در هيستوگرام انجام مي گيرد. سپس الگوريتم در پيكسل هاي طرف نامربوط به اشياء آن قله به دنبال يك نقطه p% است.

به عنوان مثال در شكل ۱۰كه پيكسل هاي شيء در طرف چپ قله زمينه در مقدار ۱۸۳قرار دارند، بدان معني است كه در سمت راست قله بايد جستجو شود تا مقدار مثلا % ۹۵يافت شود. در اين مقدار روشنائي، ۵%پيكسل ها در طرف راست يا بالاتر قرار مي گيرند و اين مساله در مقدار ۲۱۶اتفاق مي افتد. به دليل تقارن در نظر گرفته شده ما آستانه را مقداري در نظر مي گيريم كه مقدار ماكسيمم به اندازه اختلافش تا مقدار p%به سمت چپ تغيير مكان دهد. يعني مقدار آستانه معادل مي شود با ۱۵۰= ۱۸۳ (۲۱۶-۱۸۳)

اين تكنيك به راحتي قابل تبديل به مواردي است كه شيء روشن بر روي زمينه تاريك قرار دارد. همچنين در مواردي كه قله مربوط به شيء بزرگ تر است و روشنائي مربوط به آن در اطراف قله به صورت متقارن پخش شده است نيز قابل استفاده است.

الگوريتم مثلث و پردازش تصویر در پزشکی

الگوريتم مثلث و پردازش تصویر در پزشکی

اين روش كه در شكل (۱۱) نشان داده شده است توسط زاك مطرح شد. از بلند ترين نقطه هيستوگرام خطي به كوتاه ترين نقطه آن كشيده مي شود. فاصله بين خط و هيستوگرام (d) براي تمام مقادير b از b min تا b max محاسبه مي شود. مقدار روشنائي b0 كه فاصله بين h(b0) تا خط بيشترين مقدار را داشته باشد به عنوان آستانه تعريف مي شود. اين تكنيك زماني موثر است كه قله مربوط به شيء ضعيف باشد.

تعيين آستانه نبايد بر روي كل تصوير اعمال شود بلكه مي تواند به صورت ناحيه به ناحيه اعمال شود. چو و كانكو روشي را ابداع كردند كه در آن تصوير m*n به نواحي جدا از هم تقسيم مي شود. در هر ناحيه يك آستانه مشخص شده و پس از تعيين تمام آستانه ها، همه مقادير آن ها در تعيين يك سطح آستانه براي كل تصوير استفاده مي شوند. اندازه ناحيه ها بايد منطقي باشد و داراي تعداد كافي پيكسل به منظور تعيين هيستوگرام و آستانه باشند. كاربرد اين روش بستگي به نحوه استفاده و مهارت فرد دارد.

استفاده از تصاوير رنگي مي تواند تمايز بيشتري به همراه داشته باشد. بخش بندي تصوير مي تواند انجام بر اساس رنگ هاي قرمز، سبز و آبي (RGB) انجام شود و يا بر اساس روش رنگ، اشباع و شدت (HSI) كه روشي قدرتمند تر است. روش HSI به مغز انسان براي تشخيص اشياء نزديك تر است. Hue به معني طول موج رنگ، Saturation بيانگر درجه خلوص رنگ و Intensity نشان دهنده ميزان روشنائي يا تاريكي نسبي است.

تشخيص لبه

الگوریتم مثلث پردازش تصویر در پزشکی

يكي ديگر از روش هاي بخش كردن تصوير، تشخيص لبه است. در روش تعيين آستانه تصوير به پيكسل هائي تقسيم مي شود كه هر كدام اصولا به يك شيء مورد نظر اختصاص مي يابند. حالت ديگري وجود دارد و آن اين است كه پيكسل هائي جستجو شوند كه به كناره اشياء اختصاص دارند. تكنيك هاي مربوط به اين عمل، تكنيك هاي تشخيص لبه ناميده مي شوند. رياضيات شكل شناسي بيان مي كند كه يك رابطه ذاتي بين لبه ها و نواحي وجود دارد. فيلترهاي تشخيص لبه زيادي وجود دارد از جمله لاپلاس، سوبل، کني، پرويت و روبرتز كه مي توانند اشياء را تشخيص و ارتقا دهند. اين فيلتر ها گراديان ها را برجسته مي سازد و تحول از يك روشنائي به ديگري را تشخيص مي دهد. با اين حال اين فيلتر ها اشياء ناپيوسته و اشيائي را كه روي هم افتاده باشند تشخيص نمي دهند. الگوريتم هائي ممكن است استفاده شوند تا لبه هاي نزديك به هم به يكديگر بچسبند. همچنين فيلترهاي آب پخشان (Watershed) مي توانند اشياء روي هم افتاده را جدا كنند.

روش بر اساس گراديان(Gradient-based procedure)

چالش اصلي در تكنيك هاي تشخيص لبه يافتن روش هايي است كه مي توانند يك محيط بسته را در اطراف اشياء مورد نظر ايجاد كنند. براي اشيائي كه داراي SNR بالا هستند مي توان گراديان را محاسبه كرد و سپس از يك آستانه مناسب استفاده نمود.

روش عبور كردن از صفر (Zero-crossing procedure)

الگوریتم مهندسی پزشکی

يك نماي پيشرفته تر براي حل مشكل تشخيص لبه در تصاوير پر از نويز استفاده از روش هاي عبور كردن از صفر در لاپلاس يك تصوير است. اين روش از يك مدل ايده آل لبه آغاز مي شود، يك تابع پله ، كه توسط يك OFT تار شده است و شكل زير حا صل مي شود:

بر اساس مدل محل لبه در نقطه اي از تصوير است كه لاپلاسين تغيير علامت مي دهد يعني از صفر عبور مي كند. به دليل اين كه عمل لاپلاسين شامل مشتق دوم است اين احتمال وجود دارد كه در تصوير هاي داراي فركانس فاصله اي بالا نويزها ارتقا يابند. براي جلوگيري از ارتقاء نويز ها در هنگام جستجو براي منطقه عبور از صفر، يك عمليات هموار سازي لازم است انجام گيرد.

يك فيلتر هموار سازي مناسب از ميان فيلترهاي موجود، طبق نظر كني بايد دار اي خواص زير باشد:

در دامنه فركانس، فيلتر بايد تا حد ممكن باريك باشد تا بتواند نويز هاي فركانس بالا را كاهش دهد.

فيلتر بايد تا حد ممكن باريك باشد تا بتواند در دامنه فضائي (spatial domain) به خوبي لبه ها را مكان يابي كند. يك فيلتر عريض اين عدم اطمينان را دارد كه در محدوده خود فيلتر، لبه دقيقا كجا قرار گرفته است.

فيلتر هموار سازي كه به طور همزمان هر دوي اين خصوصيات را داشته باشد، فيلتر گاوسين است. اين بدان معني است كه تصوير بايد با يك گاوسين مناسب هموار سازي شود، سپس لاپلاسين بر روي آن اعمال شود.

بايد توجه داشت كه ترتيب عملگرها مي تواند عوض شود و يا هر دو در يك فيلتر تركيب شوند.

روش فیلتر PLUS

روش فیلتر PLUS

از بين تمام روش هاي عبور از صفر براي تشخيص لبه، شايد دقيق ترين آن ها فيلتر PLUS باشد. اين فيلتر توسط ونبيك و وليت ساخته شد.

تمام روش هاي تشخيص لبه بر اساس عبور از صفر در لاپلاسين بايد بتوانند بين عبور از صفر و مقدار صفر تمايز قائل شوند. براي تمايز بين اين دو حالت، ابتدا كليه عبور از صفر ها را تشخيص داده و آن ها را با ۱علامتگذاري مي كنيم بقيه پيكسل ها را با ۰علامت مي زنيم. سپس تصوير حاصل را در هر پيكسل در يك مقدار تحت عنوان توان لبه ضرب مي كنيم. اندازه هاي مختلفي براي توان لبه وجود دارد كه بر اساس گراديان بدست مي آيند. اين قابليت يعني استفاده از گراديان مورفولوجيكال به عنوان مقدار توان لبه بسيار موثر است. پس از انجام ضرب، تصوير آستانه گذاري مي شود تا نتيجه نهائي به دست آيد.

روش هاي تشخيص لبه نهايتا منجر به تصاويري مي شوند كه حاوي يك سري از پيكسل هاي لبه است. اگر اين لبه ها با اشياء مورد نظر تطبيق داشته باشند بايد از يك روش پر كردن ناحيه براي بدست آوردن اشياء نهائي استفاده كرد.

استخراج منطقه (Region extraction)

استخراج منطقه Region extraction

اين روش ها قسمت هائي از تصوير كه از يك قاعده يكنواختي پيروي مي كند را جدا سازي مي كند. قاعدتا لازم است براي هر پيكسل موجود در هر منطقه اختلاف سطح خاكستري با ديگر پيكسل هاي آن از يك مقدار مشخصي كمتر باشد. در حالتي از اين روش فقط يك نقطه و نقاط همسايه نزديك آن در نظر گرفته مي شوند. اصولا اين روش ها منجر به تشخيص نواحي بسته و در نتيجه محيط هاي بسته مي شوند كه به راحتي قابل بررسي با روش هاي اندازه گيري مورفولوجيكال هستند. نكات منفي اين روش ها پيچيدگي آن ها است و اين كه معمولا مناطق كوچك زيادي تشخيص داده مي شوند. در اينحا معمولا پس پردازش لازم است مثل منظم سازي اشكال و حذف نواحي كوچك با استفاده از Erosion/ Dilation. به علاوه جداسازي تصاوير داراي بافت هنوز يك مشكل عمده است. در حال حاضر براي اينگونه موارد از توابع حمايت كننده فشرده مثل فيلتر هاي گيبور و يا ويولت ها استفاده مي شود.پس از اينكه اشياء جداسازي شدند، بايد با روش هائي بتوان اشياء را دسته بندي كرد.

دسته بندي تصوير (Image Classification)

دسته بندی تصاویر کنسرسیوم ایرکاس

يك شخص خبره براي دسته بندي كردن ويژگي هاي تصوير از المان هاي بينائي كه قبلا ذكر شد استفاده مي كند تا گروه پيكسل هاي مشابه كه ويژگي هاي خاصي را در تصوير نشان مي دهند شناسائي كند.طبقه بندي ديجيتال تصوير از اطلاعات طيفي تصوير كه توسط اعداد ديجيتال در يك يا چند باند طيفي وجود دارند استفاده مي كند و سعي مي كند كه هر پيكسل را بر اساس اين اطلاعات طيفي طبقه بندي كند. اين نوع از طبقه بندي شناسائي الگوي طيفي ناميده مي شود. به هر حال هدف اين است كه در تصوير تمام پيكسل ها به يك دسته يا تم اختصاص يابند. تصوير دسته بندي شده حاصله از يك موازئيك پيكسل ها تشكيل شده كه هر كدام به يك تم اختصاص دارند و اين تصوير لزوما يك نقشه تماتيك از تصوير اوليه است.

هنگام صحبت از طبقه بندي بايد بين طبقه بندي اطلاعاتي و طبقه بندي طيفي تمايز قائل شد. طبقه بندي اطلاعاتي بيانگر قسمت هائي از تصوير است كه فرد مايل به تشخيص آن ها است مثل انواع درخت، رودخانه و غيره در يك تصوير هوائي. ولي دسته هاي طيفي گروه هائي از پيكسل است كه از نظر مقدار روشنائي در كانال هاي طيفي مختلف داده ها متحدالشكل هستند. هدف، نگاشت دسته هاي طيفي با دسته هاي اطلاعاتي مورد جستجو است. با اين حال دسته هاي طيفي وجود دارند كه با هيچ طبقه اطلاعاتي مورد نظر فرد مطابقت ندارند. متقابلا در يك دسته اطلاعاتي بزرگ نيز ممكن است زير گروه هاي طيفي منحصر به فردي وجود داشته باشد.

پردازش تصاویر پزشکی ایرکاس

عمليات طبقه بندي شايع بسته به روش هايي كه در آن ها استفاده مي شود به دو دسته عمده با سرپرست و بدون سرپرست تقسيم مي شوند. در نوع با سرپرست فرد خودش نمونه هاي مشابه بيان كننده نوع سطح پوشاننده را شناسائي مي كند. اين نمونه ها به عنوان نواحي آموزنده (Training areas) ناميده مي شوند. انتخاب اين نواحي آموزنده بسته به ميزان آشنائي فرد با بافت موجود در تصوير دارد. بنابراين فرد نحوه انتخاب گروه ها و دسته ها را نظارت مي كند. اطلاعات رقمي موجود در همه باندهاي طيفي كه تشكيل دهنده اين نواحي هستند براي آموزش كامپيوتر جهت شناسائي نواحي مشابه از نظر طيفي براي هر طبقه استفاده مي شود. كامپيوتر از روش ها و الگوريتم هاي مختلفي براي شناسائي مشخصه هاي عددي هر دسته آموزشي استفاده مي كند. هنگامي كه كامپيوتر همه دسته هاي آموزشي را شناسائي كرد، هر پيكسل تصوير با اين دسته ها مقايسه مي شود و نهايتا براي يك دسته نزديك به خودش علامتگذاري مي شود. پس در مدل داراي سرپرست، ابتدا طبقه هاي اطلاعاتي مشخص مي شود سپس از روي اين طبقه هاي اطلاعاتي، طبقه هاي طيفي كه نماينده آن ها هستند مشخص مي شود.

دسته بندي بدون سرپرست اصولا عكس نوع داراي سرپرست است. در ابتدا كلاس هاي طيفي بر اساس عدد طيفيشان مشخص مي شوند سپس با دسته هاي طيفي مد نظر فرد نگاشت مي شوند. برنامه هائي تحت عنوان الگوريتم هاي خوشه بندي براي تشخيص گروه بندي هاي طبيعي (آماري) و ساختار هاي موجود در تصوير به كار برده مي شوند. معمولا فرد مشخص مي كند كه چه تعداد گروه يا طبقه بايد در نظر گرفته شود. به علاوه، فرد مشخص مي كند كه بين طبقه ها چه مقدار فاصله تمايز وجود داشته باشد و همچنين چه مقدار تغيير در درون يك طبقه مجاز است.نتيجه نهائي اين طبقه بندي ممكن است به دسته هائي منجر شود كه فرد لازم مي داند تعدادي از آن ها ر ا به هم بپيوندد يا تعدادي را به ميزان بيشتري بشكند كه اين مساله خود نيازمند كاربرد بيشتر الگوريتم خوشه بندي است. پس طبقه بندي بدون سرپرست لزوما بدون دخالت انسان نيست ولي با نظارت اوليه يك انسان نيز شروع نمي شود.

 

آشنایی با کاربردهای لیزر دندانپزشکی

با پیشرفت های چشم گیری که در حوزه لیزر انجام شده است، لیزرها در تمامی صنایع ورود پیدا کرده اند از جمله صنایع پزشکی و دندانپزشکی. همان طور که میدانید لیزر کاربرد های مختلفی در دندانپزشکی دارد که در این مطلب با کاربردهای لیزر دندانپزشکی آشنا می شوید

.کاربرد های لیزر در دندانپزشکی 3

سال‌هاست در اخبار پزشکی و مجلات خانوادگی از کاربرد لیزر در درمان‌های دندان‌پزشکی می‌شنویم. این روزها در تبلیغات برخی مطب‌ها و کلینیک‌های دندان‌پزشکی نیز نوید استفاده از لیرز برای رهایی از صدای آزاردهنده توربین‌های دندان‌پزشکی و کاهش درد و خون‌ریزی را می‌شنویم. اما ممکن است وقتی از دندان‌پزشک خود درباره کاربرد لیزر سوال کنید، بشنوید آنچه مردم از کاربرد لیزر در ذهن دارند در اصل یک اشتباه عامیانه است و چیزی که به عنوان لیزر در مطب‌های دندان‌پزشکی دیده‌اند، تنها نور آبی رنگ یک دستگاه مخصوص است که برای ترمیم دندان‌ها با ماده کامپوزیت کاربرد دارد و لیزر محسوب نمی‌شود. پس لیزر دندان‌پزشکی چیست و چه کاربردهایی در دندان‌پزشکی دارد(آموزش تعمیر تجهیزات دندانپزشکی).

لیزر چیست؟

واژه لیزر خلاصه شده عبارت Light Amplification by Stimulated Emission of Radiation است. نور تقویت شده‌ای است که به شکل پرتوهای هم راستای بسیار باریک با طول موج مشخص تابیده می‌شود. این نور تقویت شده نوعی از انرژی را فراهم می کند که گونه های آن، کاربردهای گوناگونی در گستره دانش پزشکی دارند.

کاربردهای لیزر در دندان‌پزشکی:

لیزر در دندان‌پزشکی کاربردهای زیادی دارد. برخی از این کاربردها عبارتند از:

۱- تشخیص پوسیدگی و جرم:

یکی از روش های نوین در تشخیص زودرس ضایعات پوسیدگی و جرم دندانی کاربرد لیزر فلورسانس است. در این تکنیک نور لیزر به بافت بیولوژیک تابانده شده و در صورت حضور فعالیت متابولیک باکتریایی، این لیزر با القای اثرات فلورسانس، بازتابی به دستگاه برمی گرداند. دستگاه با تبدیل شدت این نور برگشتی به یک مقیاس عددی می‌تواند به تشخیص ضایعه پوسیدگی یا جرم کمک کند.

از نمونه‌های تجاری این تکنولوژی می‌توان به دستگاه دیاگنودنت و سیستم فیدبک دستگاه لیزر Er:YAG Kavo KEY3 اشاره کرد. در این دو دستگاه از یک لیزر قرمز رنگ دیود nm655 با شدت کمتر از mW1 استفاده می‌شود. این نور از طریق یک فیبر مرکزی به دندان تابش یافته و نور فلورسانت برگشتی از طریق فیبرهای دیگری که به شکل محیطی اطراف فیبر مرکزی قرار گرفته اند؛ به دستگاه برمی گردد. در این مرحله سیگنال برگشتی آنالیز شده و به یک مقیاس عددی از ۰ تا ۹۹ تبدیل می گردد.لیزر دندانپزشکی 2

  نمایشگر دستگاه علاوه بر این که به صورت لحظه ای در هر نقطه مقادیر را نشان می دهد؛ نشان دهنده ی بالاترین عدد ثبت شده در کل روند معاینه می باشد. بروز پاسخ فلورسنت را به واسطه ی حضور محصولات باکتریایی همچون porphyrin ها و دیگر عوامل نور دوست در ضایعات پوسیدگی و جرم زیر لثه ای می دانند.

در این روش از تابش لیزر دیود۶۵۵ نانومتر استفاده می شود امتیاز استفاده از این روش آناست که با حساسیت تکنیکی بسیار بالای دستگاه امکان مخفی ماندن پوسیدگی از دید دندانپزشک بسیار نادر است. البته احتمال تشخیص کاذب پوسیدگی در ناحیه شیارهای سالم هم وجود دارد.

لیزر دندانپزشکی 3

۲- درمان حساسیت دندانی:

ازدیاد حساسیت عاجی یکی از علل شایع مراجعه بیماران به دندان‌پزشک است. برای درمان این مشکل روش‌های متفاوتی همچون استفاده از خمیردندان‌های حاوی مواد ضد حساسیت، ژل‌های فلوراید و ادهزیوهای عاجی وجود دارد. استفاده از انواع مختلف لیزر نیز برای درمان این عارضه کاربرد دارند. به‌طور مثال تابش لیزر دیود ۸۱۰ نانومتر به سطح دندان با توان ۱ وات و به شکل عمود و غیر تماسی به مدت ۳۰ تا ۶۰ ثانیه می تواند در یک بار استفاده به میزان قابل توجهی حساسیت عاجی را به شکل فوری کاهش دهد. همچنین مطالعات تکرار این روند را با فاصله ۲ هفته ای جهت بهبود قابل ملاحظه نتایج پیشنهاد داده اند.

کاربرد لیزر ER-Yag هم در دز های پایین (subablative doses)یکی از روشهای مطرح در درمان این مشکل است که اثرات مثبت و دوام طولانی مدت آن ثابت شده است، البته استفاده از این لیزر ها هم نتوانسته است درد ناشی از حساسیت عاجی را در تمام بیماران کاملا برطرف کند.

۳- سفید کردن دندان‌ها:

یکی از کاربردهای شایع لیزر در دندانپزشکی، برای بلیچینگ (سفید کردن دندان‌ها) در مطب است. البته لیزر در درمان بلیچینگ تنها برای فعال کردن ژل بلیچینگ به‌کار می‌رود و هیچ لیزری به شکل مستقل خواص بلیچ ندارد. لیزر می‌تواند در یک مدت زمان کوتاه‌تر، دما را بالا برده و سرعت فعال شدن ژل را افزایش دهد. در این روش معمولا جهت افزایش جذب انرژی لیزر از محصولات بلیچینگ حاوی پیگمان استفاده میشود.

استفاده از لیزر در بلیچینگ سرعت کار را بهبود می بخشد اما تجربه بیشتر دندان‌پزشکان نشان می‌دهد روش بلیچینگ در خانه بهترین و پایدار ترین نتایج را به همراه داشته است.

۴- برداشت پوسیدگی و تهیه حفره:

یکی از کاربردهای جذاب لیزر برای بیماران دندان‌پزشکی بکارگیری لیزر ER-Yag به عنوان جایگزینی برای تراش حفرات و برداشت پوسیدگی مطرح شده است، در این روش لیزر اربیوم که بیشترین جذب را در مولکولهای آب داراست توسط مولکولهای آب موجود در نسج سخت دندانی یا استخوانی باعث تبخیر لحظه ای آب و expantion کریستالهای هیدروکسی آپاتیت شده که این فرایند سبب ablation لایه لایه نسج سخت بیولوژیک می گردد. این روش با حذف مته‌های دندان‌پزشکی و صدای ناهنجار انها، درمان‌های دندان‌پزشکی را خوشایندتر و تحمل‌پذیر تر می سازند.

CEREC

اما این روش معایبی نیز به همراه دارد:

*لیزر را برای دندانهایی که قبلا ترمیم فلزی داشته‌اند نمی‌توان استفاده کرد. البته در خصوص تراش ترمیم‌های کامپوزیتی لیزر اربیوم توانمند است.

 *لیزر در تراش روکش و یا پوسیدگی‌های راجعه قابل استفاده نیست.

* لیزر نمی تواند شکل کامل و صحیحی از حفره ارایه دهد بنابراین برای شکل دهی کامل حفره هنوز هم به مته‌های دندان‌پزشکی نیاز است. در صورتی‌که صرفا از لیزر به منظور تراش دندان استفاده شود ماده ترمیمی انتخابی کامپوزیت خواهد بود.

 *برای استفاده از این لیزر مانند تراش با مته‌های دندان‌پزشکی، دندان باید بی‌حسی شود. اما اگر از مقادیر پایین‌تر انرژی دستگاه استفاده شود می‌توان تراش بدون درد را برای بیمار به انجام رساند. اما از آنجا که این مقادیر انرژی حداقل انرژی قادر به ablation بافت سخت است در چنین شرایطی تراش دندانی به کندی انجام و همین محدودیت سبب می گردد که کلینسین کار با انرژی بالاتر همراه با تزریق بی حسی را ترجیح دهد.

   ۵- جراحی بافت نرم:

تقریبا تمامی لیزرهای شایع مورد کاربرد در دندان‌پزشکی با مکانیسمهای مختلف قادر به برش بافت نرم هستند. در لیزر دیود و Nd: YAG این برش به واسطه جذب انرژی توسط پیگمان و هموگلوبین موجود در بافت انجام می‌شود؛ در حالیکه در کار با لیزر CO2 یا Er:YAG این برش به واسطه جذب انرژی توسط آب بافتی اتفاق می افتد. برداشت ضایعات بافت نرم یا اصلاح فرم بافت نرم با این لیزرها قابل انجام است.

لیزرها با نفوذ به بافت نرم ضمن برش دادن آن، سبب انسداد عروق خونی و مهار گیرنده های درد در محل برش می‌شوند. به همین دلیل بیشتر بیماران درد کمتری را نسبت به روش جراحی معمولی تجربه می‌کنند. همچنین کار با لیزرهای بافت نرم ترمیم زخم را تسریع کرده و چون التهاب مختصری ایجاد می کند، تورم و ناراحتی پس از عمل نیز بسیار کمتر است.

لیزر برای درمان سرطانهای بدخیم مخاط دهان نیز کاربرد دارد. این لیزرها قادرند سلول‌ها و شبکه خونی سلول‌های سرطانی را از بین ببرند و باعث مرگ سلول‌های سرطانی شوند. همچنین لیزر می تواند باعث فعال کردن سیستم ایمنی میزبان شود.

لیزر دندانپزشکی 6

۶- درمان ریشه:

هدف اصلی در درمان ریشه تمیز کردن کانال دندان است. لیزر می تواند برای استریل کردن مجموعه کانال اصلی یا کانالهای فرعی دندان استفاده شود. کاربرد لیزرهای Diode,Nd:YAG و Er:YAG با اثربخشی متفاوت برای این منظور پیشنهاد شده است. البته برای این منظور کانال باید به شکل استاندارد توسط فایل آماده شود تا مسیر برای ورود فیبر حداقل ۲۰۰ میکرونی لیزر باز گردد.

اخیرا مطالعات آزمایشگاهی به ارزیابی لیزر اربیوم جهت انجام shaping کانال پرداخته اند که این مطالعات نتایج امیدوار کننده به نظر می‌رسد.

۷- جراحی لثه:

لیزر اربیوم می‌تواند در جراحی لثه به منظور حذف بافت گرانولیشن یا عوامل محرک سطح ریشه و در جراحی افزایش طول تاج به منظور اصلاح بافت نرم و استخوان آلوئولار کاربرد دارد. البته این روش عمدتا در قدام فکین که عرض استخوان بین دندانی کمتر است کاربرد داشته و در نواحی خلفی فکین برداشت استخوان نیازمند کنار زدن فلپ و افزایش طول تاج به شکل کلاسیک می باشد.

لیزر دندانپزشکی 7

معایب و محدودیت‌های استفاده از لیزر در دندان‌پزشکی:

۱- در صورتیکه دقت کافی در استفاده از لیزر صورت نگیرد، لیزر باعث آسیب جدی به چشم می شود. این آسیب می تواند ناشی از جذب انرژی توسط قرنیه و یا شکبیه چشم باشد . به همین علت باید حتما چشمان بیمار را با عینک محافظ پوشاند.

۲- مورد دیگری که باید در نظر داشت این است که هر دندانپزشکی که از لیزر استفاده می کند باید از ریسکهای احتمالی آن کاملا آگاه باشد و برای استفاده از دستگاه مورد نظر کاملا تعلیم دیده باشد و دوره های مخصوص لیزر تراپی را گذرانده باشد.

۳- یکی دیگر از معایب کاربرد لیزر، گران بودن آن است. برای بهره جستن از مزایای لیزر باید چندین برابر خدمات معمول دندان‌پزشکی هزینه کنید. اما اگر جزو کسانی هستید که به دلیل ترس از دندان‌پزشکی و ابزار معمول آن، جرات قدم گذاشتن در مطب‌های دندان‌پزشکی را ندارید، می‌توانید با بهره‌جستن از لیزر، تجربه‌ای متفاوت از دندان‌پزشکی داشته باشید.

با توجه به مطالب ذکر شده میتوان این‌گونه نتیجه گرفت که مهم‌ترین مزیتی که استفاده از لیزر در درمان‌های دندان‌پزشکی دارد، کاهش استرس ناشی از صدای توربین های دندان‌پزشکی و عدم لرزش وسیله است. اما در کنار این مزیت باید از آسیب های احتمالی آن آگاه بود.

ساختمان هوشمند کنسرسیوم ایرکاس

سیستم مدیریت هوشمند ساختمان ( BMS )

"BMS" یا Building management system که در فارسی آن را مدیریت هوشمند ساختمان ترجمه کرده اند به مجموعه سخت افزارها ونرم افزارهائی اطلاق ميشود که به منظورمانيتورینگ وکنترل یکپارچه قسمتهای مهم وحياتی درساختمان نصب ميشوند.

یک ساختمان هوشمند چگونه ساختمانی می باشد ؟

يك ساختمان هوشمند بنا به تعريف انستيتو ساختمانهاي هوشمند ، بنايي است كه با استفادة بهينه از چند عنصر پاية سازه و سيستم و خدمات و مديريت و روابط دروني آنها ، محيطي مناسب و داراي صرفة اقتصادي ايجاد نمايد .

تعريفي كه در كشورهاي توسعه يافته درباره يك ساختمان هوشمند عنوان ميشود چنين است : "يك ساختمان هوشمند ساختماني است كه در بردارنده محيطي پويا و مقرون به صرفه به وسيله يكپارچه كردن چهار عنصر اصلي يعني سيستمها، ساختار، سرويسها و مديريت و رابطه ميان آنها است . "مزاياي يك ساختمان هوشمند از طريق اتوماتيك كردن سيستمهائي مانند گرمايش و تهويه مطبوع "HVAC" سيستم اعلام حريق و آتشنشاني، سيستمهاي امنيتي و مديريت انرژي و روشنائي به وجود مي آيد.

اگر حريقي در يك ساختمان به وقوع بپيوندد، سيستم اعلام حريق با سيستم امنيتي به صورت خودكار ارتباط برقرار مي كند و از اين طريق قفل هاي كليه درها باز ميشوند و مردم مي توانند به راحتي از محل حريق دور شوند و نيز ارتباطي خودكار برقرار كرده و از اين طريق هواي سالم جايگزين هواي دودآلود HVAC سيستم امنيتي با سيستم مي شود.

اصول يك ساختمان هوشمند مي گويد كه هزينه هاي واقعي يك ساختمان فقط هزينه هاي ساخت نيست بلكه بايد به آنها هزينه هاي راهبري و تعميرات را نيز اضافه كرد.ساختمان هوشمند تمامي اين هزينه ها را به وسيله كنترل اتوماتيك و يكپارچه، مخابرات و سيستم مديريت كم ميكند(آموزش هوشمند سازی ساختمان در تبریز).

در قرن بيست و يكم و تغييرات فرهنگي و تكنولوژي و همچنين تغيير نحوه ديد مردم در مورد محيط كاري و زندگي خود، چه در بخش تجاري يا صنعتي يا حتي مسكوني، نياز به محيطي كه حداكثر استفاده و حداقل هزينه را بتوان در آن تجربه كرد وجود دارد .

وظيفه این مجموعه، پایش مداوم بخش های مختلف ساختمان و اعمال فرامين به آنها به نحویست که عملکرد اجزاء مختلف ساختمان متعادل با یکدیگرودرشرایط بهينه وباهدف کاهش مصارف ناخواسته وتخصيص منابع انرژی فقط به فضاهای در حين بهره برداری باشد.

BMS میيتواند در برگيرنده تمام سرویس های الکتریکی , مکانيکی , و حفاظتی ساختمان باشد. این سرویس ها شامل گرمایش، سرمایش، تهویه مطبوع، آسانسور، نيروگاه برق اضطراری، پله برقی، کنترل روشنایی، دوربين مدار بسته، اعلام و اطفای حریق، کنترل تردد و ... هستند.

 ساختمان هوشمند ایرکاسBMS

یک سیستم BMS توابع مختلفی را ارائه می کند که عبارتند از :

- سوئیچینگ اتوماتیک ON/OFF تجهیزات

- مانیتورینگ وضعیت تجهیزات ، همراه با شرایط محیطی

- نگهداری و حفاظت انرژی

- مدیریت تجهیزات ساختمان

- قابلیت های کنترل از راه دور

- ردیابی خطا

- قابلیت یکپارچه کردن سیستم های ساختمان

چراغها و لامپ هایی که از روی سهل انگاری روشن می مانند ، موتورخانه ها و سیستمهای سرمایشی و گرمایشی به دلیل عدم پردازش صحیح بی وقفه در حال اتلاف منابع انرژی هستند ، عزیزانی که در خانه بر اثر نشتی گاز جان خود را از دست می دهند ، ترکیدگی های لوله های آب که باعث آب گرفتن ساختمان می شوند و صدها مورد دیگر که همه از موضوعاتی می باشند که ما را برای داشتن یک ساختمان هوشمند ترغیب می کنند.

فواید استفاده از سیستم BMS

مزایای اصلی استفاده از BMS را می­توان به ۳ محور اصلی زیر تقسیم نمود :

۱صرفه­جویی انرژی و کاهش هزینه ­های نگهداری

۲ایمنی

۳افزایش سطح رفاه و آسایش

۱ – صرفه ­جویی مصرف انرژی و کاهش هزینه ­های تعمیر و نگهداری

مطالعات نشان داده است که استفاده از سیستم هوشمند می­تواند بطور متوسط ۲۰درصد از مصرف انرژی و هزینه ­های جاری ساختمان می­کاهد. این سیستم علاوه بر کاهش مصرف انرژی با خاموش نمودن و کنترل آنها موجب کاهش استهلاک و افزایش طول عمر دستگاه­ها و کاهش هزینه ­های مربوطه می گردد.

۲ایمنی

در شرایط بحرانی با ارسال سریع و به موقع اعلام خطر می ­تواند در جلوگیری از حوادث و کاهش اثرات آن نقش مؤثری داشته و به طور خودکار پیام های اضطراری را به افراد یا ارگان های ذی­صلاح ارسال نماید . همچنین کنترل درب ورودی و اتصال آن به دوربین ­های مدار بسته و دستگاه ­های ثبت ورود می ­تواند ایمنی سیستم را بطور قابل ملاحظه ­ای افزایش دهد.

۳راحتی

این سیستم می­تواند بسیاری از کارهای تکراری و بازرسی­های مورد نیاز را بطور هوشمند انجام دهد. بطور مثال با حضور افراد نسبت به روشن­شدن روشنایی و فن­کوئل اقدام نماید و یا آبیاری فضای سبز و باغچه را بطور خودکار انجام دهد و یا با تنها فشار یک دکمه حالت­های از پیش تعریف شده­ ای را اجرا نماید و یا دما و نور و رطوبت مکان ها را در حد مطلوب تنظیم نماید.

BMS ساختمان هوشمند عملکرد

اجزایسیستم BMS

منظور از اجزا، کلیه تجهیزات، سیستم­های ارتباطی و نرم ­افزارهایی که جهت کنترل وسایل مختلف موجود در ساختمان مورد استفاده قرار می­گردد می­ باشد. با توجه به اینکه نیازها و خواسته ­های هر کاربر می­تواند بسیار متفاوت بوده، تجهیزات و اجزا هر سیستم نیز می­تواند با سیستم­های دیگر بسیار متفاوت باشد و کاربر می ­تواند به دلخواه خود آنها را انتخاب نماید. متداول­ترین اجراء BMSبه شرح زیر می­باشند .

۱سیستم کنترل مرکزی

این بخش مهمترین و بزرگترین جزء یک سیستم BMS بوده و هسته مرکزی آن می ­باشد. گاهی اوقات از یک کامپیوتر نیز به جای این سیستم استفاده می ­گردد ولی در اغلب موارد این بخش مستقل بوده و فقط از طریق کامپیوتر برنامه ­ریزی و کنترل می­گردد . این بخش شامل واحد پردازنده، کنترل های اصلی سیستم و کنتاکتورها و رله ­هایی که با کلیه اجزاء در ارتباط­اند ، می­باشد. همچنین در این بخش کلیدهایی وجود دارند که بطور دستی قابل تغییر هستند و با تغییر آنها می ­تواند برنامه سیستم را تغییر داد. روش­های ارتباطی کنترل مرکزی با اجزاء مختلف می ­تواند از طریق خطوط برق، سیم­های باس و یا خط تلفنی باشد .

۲خطوط ارتباطی (BUS)

برای ارتباط اجزاء مختلف BMS با یکدیگر از خطوط ارتباطی استفاده می­ گردد این خطوط از تمام اجزاء BMS عبور کرده و امکان ارسال اطلاعات را بین آنها میسر می­سازد. این خطوط می ­تواند بصورت سیم­های برق ساختمان، چند رشته سیم مشترک و یا بصورت امواج بی سیم باشد.

۳نقاط دسترسی و کنترل کننده (Access Point)

این بخش شامل یک نمایشگر و یک صفحه کلید و یا یک نمایشگر لمسی بوده و در نقاط مختلف ساختمان نصب شده و قابلیت کنترل و نمایش اطلاعات آن بخش، مانند دما، وضعیت وسایل و غیره را دارا است. این بخش مانند واحد کنترل مرکزی است با این تفاوت که توانایی­های آن محدودتر است.

۴ – سنسورها

سنسورهای گوناگونی با توجه به نیازهای مورد نظر و سطح هوشمند سازی می­ تواند در نقاط مختلف نصب گردد. انواع متداول این سنسورها عبارتند: از سنسور حضور، سنسور دما، سنسور نور، سنسور دود و غیره که می ­توانند مشخصات مورد نظر را تبدیل به سیگنال ­ها و اطلاعات مورد نظر نموده و از طریق خطوط ارتباطی به کنترل مرکزی یا نقاط کنترلی ارسال کند و کنترل مرکزی یا محلی فرمان های لازم را به انواع کلیدها، تایمرها و دیمرها ارسال می­نمایند.

۵ - دیمرهای روشنایی

دیمرها امکان تنظیم نور را با افزایش یا کاهش نور لامپ­ها بصورت الکترونیکی بوجود می ­آورند. با این تجهیزات می­توانند به همراه سنسور نور سطحنور محیط را با کم و زیاد شدن نور طبیعی تنظیم و یا حتی روشنایی را خاموش نمود و به این طریق در مصرف انرژی صرفه جویی می شود.

۶تایمرها

تایمرها جهت یک سری اعمالی که به صورت تکراری و در زمان های مشخص انجام می­شوند می ­توانند مفید باشند البته کنترل مرکزی نیز قابلیت ارسال فرمان بصورت زمانی را دارند که می ­تواند ارزان­تر از استفاده از تایمر مجزا باشد .

۷پریزها

با استفاده از پریزهایی که قابلیت ارسال و دریافت اطلاعات از طریق خطوط ارتباطی را دارند می ­توان مصرف کننده­های متصل به آن ها را روشن و خاموش و یا از وضعیت آنها مطلع گردید.

۸نرم افزار سیستم

استفاده از نرم افزار بوسیله یک کامپیوتر می ­تواند یکی از ابزارهای مفید و با قابلیت انعطاف بالا برای سیستم BMS باشد. حتی در مواردی توانایی­ هایی این نرم افزار به سیستم می­دهد که کنترل مرکزی فاقد آن می باشد از جمله گزارش ­گیری و ثبت واقع و همچنین ارتباط بصری مناسب با سیستم .

9- Web Server

وسیله ای است که کاربر را قادر می­سازد تا در هر نقطه ­ای از دنیا از طریق اینترنت به سیستم BMS دسترسی پیدا کرده و آن را کنترل نماید. این سیستم از طرفی با خطوط ارتباطی به کنترل مرکزی متصل و از طرف دیگر به تجهیزات مانند مودم به شبکه متصل می­گردد.

معماریسيستم BMS

سيستم معمولاً در سه سطح دسته بندی می شود. در سطح 1 وسائل و تجهيزات، حسگرها و اجزاء نهایی کنترل قرار می گيرند . سيستمهای E&M (ایستگاههای مهندسی و اپراتوری سيستم) در این بخش قرار دارند و از طریق ورودی و خروجيهایی به کنترلرهای یکپارچه منتقل می شوند. این انتقال ممکن است به طور مستقيم و یا از طریق تابلوهای طراحی شده صورت گيرد.

اجزاء پس از خاموش شدن سيستم وجود داشته و شامل سيستمهای I/O ، کنترلرها و نرم افزارهای ارتباطی با سطح ٢ می باشد و تمامی الگوریتمهای کنترلی و منطقی در این سطح انجام می شود.

سطح ٢ یا سطح کنترل نظارتی سطحی است که در آن ابزارهای نظارتی و مدیریت اطلاعات شامل HMI ها، سرورها، تجهيزات ذخيره سازی و ایستگاههای کاری اپراتورها و مهندسان که باید با سيستم BMS در ارتباط باشند، قرار دارد. ارتباط بين سطح یک و دو از طریق پروتکلهای استاندارد صنعتی انجام می پذیرد.

نرم افزار کنترلی سيستمهای BMS دارای قابليتهای بسياری هستند. این نرم افزارها در سطح ٣ قرار گرفته و روی سرورهای مناسب نصب می شوند و معمولاً دارای حداقل شرایط زیر هستند:

-دارای محيط گرافيکی مناسب و ساده برای کاربر عادی.

-دارای مجموعه (Library) از انواع راه حل ها و برنامه ها جهت آسانی طراحی و توسعه سيستم در آینده.

-دارای امکانات PM (سرویس و نگهداری) جهت راهبری سيستم در آینده بدون نياز به تهيه نرم افزار PM مجزا.

امکان تعریف طول و عرض جغرافيایی جهت تنظيم اتوماتيک شرایط طلوع و غروب خورشيد و کنترل مصرف انرژی.

-امکان تعریف لایه های امنيتی دسترس به برنامه توسط کاربران متفاوت.

-امکان تعریف لایه های امنيتی برای کاربران زیر سيستم های متفاوت از قبيل Access ، HVAC ، Lighting و ...

-امکان ذخيره سازی اطلاعات نرم افزار در بانکهای اطلاعاتی SQL قابل کنترل توسط Microsoft Windows.

امکان تهيه ، تنظيم و مقایسه نمودارهای مختلف عملياتی از جمله نمودار مصرف برق و ... در بازه های مختلف زمانی (Trends)

-ارتباط ساده نرم افزار گرافيکی و I/O های سيستم.

امکان ذخيره سازی اطلاعات مربوط به خطاها و دیگر گزارشات تا مدتها قبل.

 آموزش دوره هوشمند سازی ساختمان

استفاده از فرآیندهایی برای کنترل خودکار عملیات ساختمان از جمله گرمایش، تهویه، روشنایی، امنیت و سایر سیستم ها در داخل یک سازه، هوشمند سازی ساختمان نام دارد. یک ساختمان هوشمند از حسگرها، محرک‌ها و ریزتراشه‌ ها استفاده می‌کند تا داده‌ها را جمع‌آوری کرده و آن‌ها را مطابق با عملکردها و خدمات کسب ‌و کار مدیریت کند. هوشمند سازی ساختمان به مالکان، اپراتورها و مدیران تسهیلات کمک می کند تا درصد اطمینان و مراقبت از دارایی ها را بهبود بخشند، مصرف انرژی را کاهش دهند، نحوه استفاده از فضا را بهینه کنند و اثرات زیست محیطی ساختمان ها را به حداقل برسانند.

آینده صنعت ساخت و ساز در هوشمند سازی ساختمان است. ساخت یک ساختمان هوشمند یا هوشمند سازی ساختمان با پیوند دادن سیستم های اصلی نام برده در بالا مانند روشنایی، کنتورهای برق، کنتورهای آب، پمپ ها، گرمایش، اعلام حریق و چیلرها با سنسورها و سیستم های کنترل شروع می شود. در مراحل پیشرفته ‌تر، حتی آسانسورها، سیستم ‌های دسترسی و سایه ‌بانی می‌توانند بخشی از سیستم شوند.

هیچ مجموعه استاندارد مشخصی وجود ندارد که ساختمان هوشمند را مشخص کند. اما وجه مشترک همه آن ها یکپارچگی است. بسیاری از ساختمان‌های جدید دارای فناوری «هوشمند»، به یک شبکه برق هوشمند متصل و پاسخگو هستند.شما حتی نیازی به جابجایی دفاتر یا ایجاد یک ساختمان جدید برای کار در یک ساختمان هوشمند ندارید. سیستم‌های اتوماسیون ساختمانی قدرتمندی وجود دارند تا صاحبان املاک بتوانند از قدرت موجود در سازه‌های قدیمی ‌تر استفاده کنند.

آموزش صفر تا صد ساختمان در تبریز

آموزش صفر تا صد هوشمند سازی ساختمان

یکی از موضوعاتی که این روزها بین مردم، به ویژه مالکین ساختمان ها و مهندسین ساخت و ساز بناها، مطرح است و صحبت های زیادی در این باره شنیده می شود، موضوع هوشمند کردن خانه ها و ساختمان هاست. بررسی ابعاد گسترده این کار و شناختن نکات مثبت آن، همچنین روش پیاده سازی و عملی کردن آن مستلزم شرکت در یک دوره جامع آموزش هوشمند سازی ساختمان است.

کلاس آموزش هوشمند سازی ساختمان در تبریز در  آموزشگاه آپادانا، تمام مباحث مورد نیاز برای شغل هوشمند سازی ساختمان ، از پایه تا پیشرفته ، در بر دارد. به همین علت می توان گفت این دوره ویژه ورود به بازار کار طراحی شده است و اگر علاقه مند به ورود به رشته هستید، می توانید با شرکت در آن، آمادگی های لازم برای استارت قوی را کسب کنید.

st scan,سی تی اسکن

مقدمه

تصویربرداری سی تی یا سی‌تی اسکن یا توموگرافی کامپیوتری (به فارسی: مقطع‌نگاری رایانه‌ای) استفاده از اشعه ایکس در ارتباط با الگوریتم‌ها و محاسبات کامپیوتری به منظور ایجاد تصویر از بدن می‌باشد. در سی تی، یک تیوب یا لولهٔ تولیدکنندهٔ اشعه ایکس، در مقابل یک آشکارساز (دتکتور) این اشعه قرار داده شده، و با کمک حلقه‌ای که به صورت یک دستگاه و به شکل چرخشی در اطراف بیمار حرکت می‌کند، تصویر کامپیوتریِ مقطعی به صورت برش یا مقطع عرضی تولید می‌نماید. سی تی در سطح آگزیال یا محوری است که تصویر به دست می‌دهد، در حالی که تصویرهای مقطع کرونال (تاجی) و ساژیتال (سهمی) را می‌توان به وسیلهٔ بازسازی‌های کامپیوتری ارائه کرد..
عوامل رادیوکنتراست یا مواد حاجب اغلب در سی تی برای توصیف بهتر آناتومی مورد استفاده واقع می‌شوند. گرچه رادیوگرافی قادر به تولید و ارائهٔ تفکیک‌پذیری فضایی بالاتری است، اما در عوض سی تی می‌تواند اطلاعات بیشتری را در مورد تغییرات دقیق و ظریف مربوط به میرایی پرتو ایکس تشخیص دهد. در ضمن سی تی بیمار را در معرض تابش اشعهٔ یونیزان بیشتری در مقایسه با رادیوگرافی قرار می‌دهد. در سی تی نوع اسپیرال با آشکارسازهای زیاد (مولتی دتکتور) از چند ردیاب یا آشکارساز بهره گیری می‌شود. در این نوع ۸ ، ۱۶، یا ۶۴ ردیاب یا آشکارساز در طول حرکتی پیوسته و مستمر از بیمار، از طریق تابش پرتو تصویر به دست می‌آورند که حاصل تصاویری عالی و با جزئیات بسیار ظریف در زمان بررسی کمتر می‌باشد.
با تجویز سریع کنتراست وریدی در طی سی‌تی اسکن این جزئیات دقیق تصویری را می‌توان بازسازی سه‌بعدی ۳D نمود و بدین ترتیب تصاویری از کاروتید، شریان مغزی و کرونری، یا به صورت سی تی آرتریوگرافی و سی تی آنژیوگرافی حاصل نمود. سی‌تی اسکن است تست انتخابی در تشخیص برخی از شرایط اضطراری و اورژانس مانند خونریزی مغزی، آمبولی ریه (لخته‌ای که موجب انسداد در عروق ریه‌ها شود)، دایسکشن آئورت یا همان پارگی سرخرگ آئورت (پاره شدن دیواره آئورت)، آپاندیسیت، دیورتیکولیت، و سنگ کلیه می‌باشد. با ادامهٔ پیشرفتها و بهبود مداوم در تکنولوژی(فناوری) سی‌تی اسکن، از جمله سریعتر شدن زمان تصویربرداری و بهبود رزولوشن یا وضوح و تفکیک‌پذیری تصاویر، دقت و کارایی این روش به طور چشمگیری افزایش یافته و در نتیجه از سی‌تی اسکن به میزان بیشتری در تشخیص‌های پزشکی استفاده می‌شود.
نخستین دستگاه سی‌تی اسکن (سی‌تی اسکنر) که به لحاظ تجاری قابل بهره‌برداری بود، توسط سر گادفری هانسفیلد در آزمایشگاه مرکزی تحقیقات ایمی (EMI) در بریتانیای کبیر به سال ۱۹۷۲اختراع شد. حقوق قانونی ایمی (EMI) متعلق به شرکت توزیع آثار موسیقیِ گروه بیتل‌ها (بیتلز) بود که منافع آن به بودجهٔ پژوهشی اختصاص می‌یافت. سر گادفری هانسفیلد و آلن مک لود مک کورمک، به خاطر اختراع مشترکشان یعنی سی‌تی اسکن، برندهٔ جایزهٔ نوبل پزشکیِ سال ۱۹۷۹ شدند. نخستین دستگاه سی تی یا همان سی‌تی اسکنر نیز، به سال ۱۹۷۲ در کلینیک میو در روچستر واقع در مینسوتا نصب گردید


تاریخچه سی تی اسکن
مدتی پس از آن که رونتگن اشعه ایکس را کشف کرد، این اشعه برای تصویربرداری پزشکی مورد استفاده قرار گرفت. تصاویری که با این روش از اعضای مختلف بیمار گرفته می شدند تنها تصاویری یک بعدی بودند و نمی توانستند مقطع خاصی از بدن را شناسایی نموده و یا تصویری چند بعدی از اعضای مختلف بدن در اختیار پزشکان بگذارند. با پیشرفت دانش تصویربرداری در پزشکی، سونوگرافی با استفاده از امواج صوتی و پس از آن سی تی اسکن با اشعه ایکس ابداع شد و به این ترتیب امکان تصویربرداری از مقاطع مختلف بدن پدید آمد. کاربرد بالینی سی تی اسکن گسترده تر و پر سر و صداتر از کاربردهای سونوگرافی بود؛ به علاوه سرعت تحول و دگرگونی های آن نیز از سایر دستگاه های رادیولوژی متنوع تر بود، به نحوی که در طی چهار دهه گذشته، چهار نسل از این دستگاه وارد بازار شد و اینک همه ساله انواع جدید و پیشرفته ای از این سیستم به جهان پزشکی عرضه .میشود.دستگاه سی تی اسکن توسط آقای ان. گادفری هانسفیلد یعنی جایی که ای ام آی انگلیسی بود ساخته شد
جالب توجه است که دستگاه سی تی اسکن در کارخانه ی بیتل ها که در آنجا میلیاردها پوند صفحه گرامافون از آهنگ های مختلف موسیقی و جاز پر می کردند ساخته شد. اگر چه هانسفیلد و رئیس گروه بیتل ها هر دو بنا به ملاحظات اقتصادی و سودآوری که فعالیت هایشان در پی داشت به دریافت لقب (سر) مفتخـر شدند اما خدمات ارزنده ی  هانسفیلد به لحاظ معنـوی از ارزشی غیر قابل تصور برخوردار است.وی به جهت ابداع دستگاه سی تی اسکن در سال 1973 میلادی موفق به دریافت جایزه نوبل پزشکی گردید.


سیر تحولی و رشد
مانند تمام رشته‌های تصویر گیری پزشکی (رادیولوژی)دستگاه‌های سی‌تی اسکن بطور مداوم تغییر کرده و بوسیله کارخانه‌ها و سازندگان مختلف پیش رفته است. دستگاه اولیه که بوسیله هانسفیلد و توسط شرکت ای ام آی ساخته شده بود، فقط برای ارزیابی مغز طراحی شده بود، که دستگاه نسل اول یا ای ام آی نام داشت. مدت‌ زمان کوتاهی نگذشت که نسل دوم دستگاه‌های سی‌تی اسکن با امکانات بیشتر به بازار آمد و نسل سوم این دستگاه‌ها با امکاناتی از جمله کم شدن زمان تصویر گیری معرفی شد. هم ‌اکنون نسل چهارم با سرعت خیلی بالا و امکانات بهینه و نتایج عالی موجود می‌باشد.


ساختمان یک دستگاه سی‌تی اسکن
یک دستگاه اسکن توموگرافی کامپیوتری از یک میز برای قرار گرفتن بدن بیمار ، یک گانتری که سر بیمار در آن قرار می‌گیرد، یک منبع تولید اشعه ایکس ، سیستمی برای آشکار کردن تشعشع خارج ‌شده از بدن ، یک ژنراتور اشعه ایکس ، یک کامپیوتر برای بازسازی تصویر و کنسول عملیاتی که تکنولوژیست رادیولوژی بر آن قرار می‌گیرد، تشکیل شده است


سی تی اسکن چگونه کار میکند
برای انجام سی تی اسکن از اشعه ایکس استفاده میشود. در این روش باریکه نازکی از اشعه ایکس (مانند باریکه اشعه لیزر) به اندام بیمار تابانده میشود. این اشعه از تمامی بافت هایی که سر راه آن قرار دارند عبور کرده و مقداری از آن که از طرف مقابل اندام خارج میشود به توسط دتکتور یا آشکارساز های حساسی دریافت میگردد. این دتکتورها اشعه را به جریان الکتریکی تبدیل میکنند. این فرایند هزاران بار از زوایای گوناگون تکرار میشود یعنی باریکه اشعه ایکس از زوایای گوناگون به درون اندام تابانده شده و خروجی آن در طرف مقابل اندام اندازه گیری میشود.
بدین ترتیب اطلاعات بسیار زیادی بصورت مقادیر مختلف شدت جریان الکتریکی که متناسب با شدت اشعه دریافت شده توسط دتکتور است گردآوری شده و به کامپیوتر مرکزی سی تی اسکن ارسال میشود. این کامپیوتر بسیار پر قدرت، اطلاعات را پردازش کرده و نتیجه آن بصورت تصاویر متعددی که سطح مقطع اندام را نشان میدهند بر روی مانیتور دستگاه مشخص میشود. در صورت لزوم این تصاویر بر روی فیلم چاپ میشوند.
 
تصاویر سی تی اسکن با دقت بسیار بیشتر از تصاویر رادیوگرافی ساده، شکل استخوان ها و حتی بسیاری از بافت های دیگر اندام را نشان میدهد. با استفاده از این تکنیک میتوان داخل استخوان را هم مشاهده کرد. اکثر سی تی اسکن های امروزی اسپیرال یا مارپیچی هستند به این معنا که منبع اشعه ایکس مانند یک مارپیچ به دور بدن بیمار حرکت کرده و از جهات مختلف تصویربرداری میکنند. تصاویر سی تی اسکن های امروزی بسیار دقیقتر از قبل شده و سرعت این دستگاه ها هم زیاد شده است بطوریکه معمولا انجام یک تصویربرداری سی تی اسکن چند دقیقه بیشتر طول نمیکشد.


طراحی اتاق سی تی اسکن
دیوارهای اتاقی که دستگاه سی تی اسکن در آن قرار دارد از سرب با ضخامت مناسب پوشیده شده است تا از خروج اشعه ایکس از اتاق و تابش آن به محیط خارج جلوگیری شود. لذا سالن ها و کریدورهای مجاور اتاق سی تی اسکن و حتی اتاقی که اپراتور یا کارشناس دستگاه سی تی اسکن در آن قرار گرفته و بر عملیات  تصویربرداری نظارت می کند به واسطه داشتن شیشه های سربی از تابش اشعه ایکس محافظت می شوند.


ماده حاجب در سی تی اسکن
مواد حاجبی که امروزه در رادیولوژی به کار می روند دیگر مثل مواد قدیمی یونی نیستند، لذا مصرف آن ها با خطر بسیار کمی همراه بوده و ایمن است؛ اما وجود ترکیبات ید در تمامی مواد حاجب یونی و غیر یونی کماکان با احتمال حساسیت زایی و شوک همراه است.
معمولا مقدار ماده حاجب مورد مصرف ۱/۵-۲ سی سی به ازاء هر کیلوگرم وزن در بالغین و حداکثر ۱۵۰ سی سی در نظر گرفته می شود. مصرف کمتر از حد ماده حاجب دقت تصاویر را کم می کند؛ لذا باید سعی شود تا ماده حاجب به میزان مناسب مصرف شود. البته باید به این نکته توجه داشت که با استفاده از دستگاه های جدید مولتی دتکتور می توان ماده حاجب مصرفی را به ۱۰۰۸۰ سی سی کاهش داد. لازم به یادآوری است که در بررسی های قلبی ممکن است مصرف ماده حاجب به ۲۰۰ سی سی یا بالاتر هم برسد؛ضمناباید توجه داشت که ماده حاجب خوراکی مورد استفاده در سی تی اسکن معمولا غیر قابل جذب بوده، و دستگاه گوارش جذب نمی شود.

نسل‌ها
در واقع، تکامل سیستمهای سی‌تی را میتوان بصورت زیر خلاصه کرد
نسل اول: سیستم‌های پرتو خطی                          
نسل دوم: سیستم‌های پرتو بادبزنی باریک
نسل سوم: سیستم‌های پرتو بادبزنی پهن
نسل چهارم: سیستم‌های با حرکت دورانی منشا، اما با آشکارساز ساکن
نسل پنجم: سیستم‌های مقطع‌نگاری رایانه‌ای با پرتو الکترونی
نسل ششم: اضافه شدن حرکت مارپیچی یا اسپیرال
نسل هفتم: استفاده از آرایه‌های آشکارساز چندردیفی
امروزه پویشگرهای سی‌تی نسل هفتم بر اساس الگوی حرکتی سیستمهای نسل سوم کار می‌کنند، و سیستمهای نسل چهارم در واقع از رده خارج شدند. لذا منشا پرتوها و آشکارسازها هر دو حرکت دورانی دارند. همچنین با آمدن به بازار سی‌تی‌های نسل ششم و هفتم با آرایهٔ +۶۴ برش، سیستم‌های مقطع‌نگاری رایانه‌ای با پرتو الکترونی تقریباً از صحنه حذف شده‌اند، و امروزه بیشتر فقط برای پژوهش کاربرد دارند.


چگونه یک سی تی اسکن کار می کند؟
سی تی اسکنر مجموعه ای از پرتوهای باریک ساطع می کند که از بدن انسان به صورت دورانی عبور میکند ، بر خلاف دستگاه اشعه ایکس که فقط یک تابش پرتو می فرستد. جزییات تصویر نهایی به مراتب بیشتر از یک تصویر معمولی اشعه ایکس است.
در داخل سی تی اسکنر آشکارسازهای اشعه ایکسی وجود دارد که می توانند صدها سطح مختلف از دانسیته را قابل دیدن نماید. آشکارسازها می توانند بافتهای درون ارگانهای جامد را قابل رویت نمایند. این اطلاعات به یک کامپیوتر منتقل می شود ، که یک تصویر 3 بعدی مقطعی از بخشی از بدن می سازد و آن را بر روی صفحه نمایشگر به نمایش در می آورد.
گاهی اوقات کنتراست رنگی برای آنکه تصویر با وضوح بیشتری بر روی صفحه نمایش نشان داده استفاده می شود. اگریک تصویر 3بعدی از شکم بخواهیم ممکن است لازم باشد که بیمار باریم بنوشد. باریم با رنگ سفیدی با عبور از دستگاه گوارش ظاهر می شود. اگر تصویر قسمتهای پایینی بدن مانند راست روده لازم باشد بیمار را با باریم تنقیه میکنند. اگر هدف رگ های خونی باشد باریم را تزریق خواهند نمود.
دقت و سرعت سی تی اسکن ممکن است با استفاده از سی تی اسپیرال بهبود یابد .دسته پرتو ایکس در یک مسیر مارپیچی   تصویر می گیرد- داده ها را به طور مداوم و بدون شکاف میان تصاویر گرد آوری می کند. برای اسکن اسپیرال از قفسه سینه ، برای مثال ، از بیمار خواسته خواهد شد که برای چند ثانیه نفسش را نگه دارد.
بیشتر اماکن برای بیمار گان یا همان روپوش فراهم میکنند. بیمار باید لباسهای زیر خود را درآورد و گان بپوشد. اگر محلی برای پوشیدن گان فراهم نیست بیمار باید خود از قبل لباس های گشاد و مناسب پوشیده باشد.
هر زنی که به گمان خود ممکن است حامله باشد باید از قبل به دکتر خود بگوید.
پزشکان ممکن است از بیمار بخواهند قبل از اسکن ناشتا باشند(چیزی نخورند) و حتی دستور به خودداری از مصرف مایعات برای دوره ی زمانی مشخصی بدهند.
از بیمار خواسته خواهد شد که روی میز متحرک آزمون درازبکشد سپس به داخل دستگاه بزرگ حلقه مانندی وارد می شود.
به برخی از بیماران ممکن است ماده کنتراست رنگی داده شود یا از طریق بلعیدن ، یا به صورت تنقیه یا تزریق کردن. این مواد رنگی تصویر برخی از رگهای خونی یا بافت ها را بهبود می بخشد . اگر بیمار به مواد کنتراست حساسیت دارد باید از قبل به دکتر خود بگوید. داروهایی برای کاهش واکنش های آلرژیک به مواد کنتراست وجود دارد.
فلز با فعالیت های سی تی اسکنر تداخل پیدا میکند بیمار باید تمام طلا و جواهر و فلزات همراهش را حذف کند. در اکثر موارد ، بیمار به پشت دراز میکشد. گاهی اوقات دربرخی موارد ممکن است لازم باشد به شکم یا به پهلو دراز بکشد .
بعد از اینکه دستگاه یک عکس اشعه ایکس می گیرد ، تخت کمی حرکت خواهد کرد ، و سپس تصویر دیگری گرفته می شود و به همین ترتیب تصاویر بعدی گرفته می شود ،برای به دست آوردن بهترین نتیجه بیمار باید در همان وضعیت تا انتهای آزمون ثابت بماند.
در طی اسکن هر کس به جز بیمار اتاق را ترک خواهد کرد. پرتونگار در خارج از اتاق قادر خواهد بود با بیمار ارتباط برقرار کند از طریق میکروفن و بلندگو در داخل اتاق. اگر بیمار خردسال است ، پدر ، مادر یا فرد بزرگسالی ممکن است برای ایستادن و یا نشستن در آن نزدیکی اجازه داشته باشد- آن شخص باید یک apron ( روپوش سربی) جهت جلوگیری از قرار گرفتن در معرض تابش بپوشد.
با وجودی که اسکن بدون درد است ، برخی از مردم دچارتجربه ناخوشایندی می شوند هنوز به طور کامل معلوم نیست برای چه آنها این چنین می شوند ممکن است به علت مدت زمان طولانی اسکن باشد. اگر شما تجربه استرس زایی در این مورد داشته باشید می توانید از دکتر خود بخواهید آرام بخش خفیفی به شما بدهد .


کاربرد
تشخیص بیماریهای مغز و اعصاب ،چون سی ‌تی اسکن می‌تواند تفاوت بین خون تازه و کهنه را به تصویر بکشد، به همین دلیل برای نشان دادن موارد اورژانس بیماریهای مغزی بهترین کاربرد را دارد.
بیمارهای مادر زادی مانند بزرگی یا کوچکی جمجمه
تشخیص تومورهای داخل جمجمه‌ای و خارج مغزی
خونریزی در قسمت‌های مختلف مغز و سکته‌های مغزی
تشخیص بیماری اعضای داخل شکمی مانند کبد ،لوزالمعده ، غدد فوق کلیوی


سی تی اسکن از بعد اقتصادی
ظاهرا هزینه انجام سی تی اسکن گران به نظر می رسد. خالی از لطف نیست که بدانید در ابتدای ورود دستگاه سی تی اسکن به ایران در یک برنامه رادیویی طنز علت نامگذاری سی تی اسکن را به جهت هزینه بالای آن «سی تریلی اسکناس» ذکر کرده بود.اما باید یادآوری نمود که در اکثر کشورها این هزینه حداقل ۱۰ برابر تعرفه انجام سی تی اسکن در کشور ماست. علت این موضوع این است که دستگاه سی تی اسکن به ویژه نسل های جدید آن بسیار پیچیده و گران قیمت بوده، به علاوه هزینه نگهداشت آن بسیار بالاست و این در حالی است که نصب و استفاده از دستگاه به ساختمان مناسب و نیروی انسانی متخصص در سطوح مختلف نیاز دارد که جمعا هزینه بالایی را در بر دارد..
توجه به این نکته اهمیت زیادی دارد که در صورتی که سی تی اسکن در زمان و مورد مقتضی صورت پذیــرد سبب حـذف بسیاری از هزینـه های اضافی و تصمیم گیری سریع و صحیح از سوی پزشک خواهد شد.این موضوع خصوصا در موارد اورژانس و سوانح و تصادفات که سرعت تصمیم گیری از سوی پزشک تاثیر بسیار زیادی بر جان بیمار دارد حائز اهمیت زیادی است؛ زیرا هنوز هم سی تی اسکن در خونریزی های ضربه های مغزی روش انتخابی تشخیصی به حساب می آید.
یکی از مزیت های سی تی اسکن آن است که در مواقع اورژانس می تواند در زمانی کمتر از ۱۵ دقیقه بدون هرگونه خطری اطلاعات کافی را از عضو مورد بررسی در اختیار پزشک معالج بگذارد.

 

دستگاههای اندازه گیری تجهیزات پزشکی مهندسی پزشکی

وسایل اندازه گيری پزشكی

پيشرفت علم و تكنولوژی متاثر از توانايی انسان در اندازه گيری است . بدون دسترسی به وسایل و دستگاههای اندازه گيری، موضوع های مطالعه ، تحقيق ، سنجش ، طراحي و غيره درصنعت بی مفهوم می شود . مقصود اوليه از اندازه گيری طبی گسترش آن چيزی است كه توسط انسان حس ميگردد،برای بدست آوردن داده های لازم برای آگاهی درست از وضعيت موجود زنده (خصوصاً انسان) ، تشخيص و درمان مريض می باشد.

 

تاریخچه وسایل اندازه گیری پزشکی

حوزه سیستم ها و دستگاههای اندازه گیری پزشکی چندان جدید نمی باشد. الکتروکاردیوگرافی بوسیلهEinthoven در قرن نوزدهم ساخته و مورد استفاده قرار گرفت.پیشرفت در این زمینه تا بعد از جنگ جهانی دوم که تجهیزات الکترونیکی نظیر تقویت کننده ها و ثبات ها دسترس پذیر شدند، کند بود. در دهه ١٩۵٠ بسیاری از تکنسین ها و مهندسان شروع به آزمایش و اصلاح تجهیزات صنعتی موجود برای کاربردهای پزشکی نمودند که اغلب نتایج آنها مأیوس کننده بود.با این آزمایش ها روشن گردید که بسیاری از پارامترهای فیزیولوژیکی، همانگونه که پارامترهای فیزیکی اندازه گیری می شوند، قابل انداز ه گیری نمی باشند. بسیاری از برنامه های فضایی آمریکا نظیر Apollo ، Gemini ، Mercury نیازمند انداز ه گیری های دقیق و صحیح پارامترهای فیزیولوژیکی فضانوردان داشت و لذا بسیاری از تحقیقات و بودجه ها بهاین امراختصاص یافت.در این زمان تحلیل و طراحی این تجهیزات مستقیما به مسایل پزشکی اختصاص یافتند.

وسایل اندازه گیری پزشکی نمودار

محدوديت ها و مشكلات اندازه گیری در یک سيستم زنده

- دسترس ناپذير بودن اغلب متغيرها برای اندازه گيری

- تغيير داده ها (تصادفي بودن)

- فقدان معرفت درباره روابط داخلی

- اندركنش بين ارگانهای مختلف بدن

- اثر مبدل روی انداز ه گيری

- اغتشاش

- محدوديت های انرژی

- محدوديت پاسخ فركانسی و كوچك بودن دامنه خروجی

وسایل اندازه گیری پزشکی -ایرکاس

روشهای مختلف دسته بندی وسایل اندازه گیری پزشکی

- دسته بندی دستگاه های اندازه گیری پزشکی براساس كميتی كه تبديل می شود( حس می شود)نظيرفشار، درجه حرارت ، جريان..

- دسته بندی وسایل اندازه گیری پزشکی براساس اصول تبديل نظير مقاومتی ، سلفی ، خازنی ، ماوراء صوت و يا الكتروشيميايی

- دسته بندی وسایل اندازه گیری پزشکی براساس ارگانهای مختلف بدن نظير قلبی ، ريوی ، عصبي و يا مترشحه داخلی

- دسته بندی تجهیزات پزشکی براساس تخصص های درمانی دارويی مختلف نظير اطفال ، حاملگی ، قلب و يا پرتونگاری

ملاک ها و معیار های طراحی دستگاه های اندازه گیری پزشکی

- دامنه کمیتی که توسط وسایل پزشکی بایستی اندازه گیری شود

- مرتبه صحت و دقت مورد نیاز تجهیزات پزشکی

- مشخصه ایستا و پویای فرایند تحت بررسی

- محل بکارگیری مبدل روی بدن مریض (یاهرسیستم تحت اندازه گیری) در کوتاه مدت و درازمدت

- ملاحظات اقتصادی برای طراحی دستگاه پزشکی

وسایل اندازه گیری پزشکی پای مصنوعی

وسایل اندازه گیری پزشکی

cyberknife www.ircas.ir

سایبرنایف، شیوه‌ای نوین در درمان سرطان

سرطان، یکی از مشکلات بشر است که انسان ھا در طی سالیان دراز با استفاده از ھمه حوزه ھای مختلف دانش و فناوری -ونه فقط پزشکی- سعی کرده اند به تدریج شناخت خود رااز آن بیشتر کنند، تا درمان ھایی برای آن پیدا کنند و اگر در مورد برخی از انواع آنھا، درمان ھا،علاج قطعی نبوده اند، دست کم بر طول عمر و یا کیفیت زندگی بیماران در روزھا و ماه ھا وسال ھای باقیمانده عمر بیفزایند.

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشد.

علاوه بر این درصد موفقیت و نابود کردن تومورهای سرطانی با این روش بسیار بالاست.

سایبر نایف روباتی است که که به روشی غیر تهاجمی و با هدف قرار دادن بسیار پر قدرت و دقیق تومورسرطانی و یا غیر سرطانی ، به پرتو درمانی می پردازد که جایگزین بسیار مناسبی برای عملهای جراحی برای خارج کردن تومور است. با استفاده ازعکسبرداری های لحظه ایی و دقت بالای این روبات هم اکنون پزشکان میتوانند سرطان هایی را که هیچگاه تصور نمی شد قابل درمان و یا در دسترس جراحان باشند را درمان کنند.

سایبر نایف با بازوی روباتیک خود وبا پرتوهای هماهنگ وارسال آن از مسیرهای چندگانه محل دقیق تومور را هدف و تومور را نابود کند . به وسیله این روش درمان ،میزان عوارض جانبی کاهش پیدا میکند زیرا این دستگاه پرتوهای تابشی را به محل دقیق تومور می تاباند و از درگیر کردن بافتهای سالم آن خوداری میشود

بنابراین استفاده از این روش برای درمان تومورهایی که در محل های بسیار حساس (مانند تومور مغزی و یا تومور نخاع) بسیار مفید و حیاتی میباشد . به وسیلهء بازوهای روباتیک سایبر نایف دیگر نیازی به استفاده از قالب سر و فیکس کردن سر بیمار در پرتو درمانی تومور مغزی نیست واین درمان را برای بیمار بدون درد خواهد کرد

به علاوه، تکنولوژی جدید سایبر نایف میتواند هدف های متحرک مانند سرطان شش و ریه را هم نابود کند. این دستگاه قابلیت تنظیم بر اساس حرکات مرتب سینه هنگام نفس کشیدن را دارد . این باعث میشود که دیگر نیازی به نگهداشتن نفس توسط بیمار نباشد و درمان با سرعت بیشتری پیش رود. بدون هیچ برش و یا بیهوشی در طول درمان، اکثر بیماران میتوانند پس از پایان جلسه درمان به زندگی عادی خود برگشته و به فعالیت روزانه خود بپردازند

نتیجه عمل به وسیله سایبر نایف در بسیاری ازغدد سرطانی بدن مخصوصا مغز، نخاع ، شش ، کلیه ،پانکراس ،ستون فقرات و پروستات شگفت انگیز است و درصد بسیار بالایی از بیمارن هیچ گاه دیگربه بیمارستان بر نمیگردند . باید در نظر گرفت که سایبر نایف برای تمامی تومورهای سرطان قابل استفاده نمیباشد بعنوان مثال نمیتوان از سایبر نایف جهت درمان سرطان سینه و یا کولون استفاده نمود

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشدعلاوه بر این درصد موفقیت و نابود کردن تومورهای سرطانی با این روش بسیار بالاست.

همان طور که می دانیم پرتودرمانی یکی از درمان‌های سرطان است که در آن با تابانیدن اشعه بر توده سرطانی، سلول‌های سرطانی کشته می‌شوند. پرتودرمانی با اهداف و شیوه‌های متنوع و متفاوتی، انجام می‌شود. انجام پرتودرمانی نیاز به امکانات و محاسبات دقیق دارد، باید دقیقا محاسبه شود که چه میزان اشعه به بدن تابانیده شود، این میزان اشعه باید دقیقا بر هدف متمرکز شود.

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشد.

از آنجا که توده‌ای که اشعه می‌گیرد در عمق بدن قرار دارد، باید اشعه طوری تابانیده شود که اعضای سر راه تحت تأثیر قرار نگیرند به همین منظور گاهی اشعه کل مورد نیاز را محسابه می‌کنند و از چند مسیر اشعه را به بدن می‌تابانند، طوری که نهایتا میزان کلی پرتو دریافتی برای کشتن سلول‌های سرطانی کافی باشد، اما از آنجا که اشعه به چند باریکه تقسیم شده و از چند زاویه به بدن تابانیده شده، اعضای سر راه آسیب نمی‌بینند.انجام همین فرایند مشکلات تکنیکی فراوانی دارد، مثلا تصور کنید که بیماری گلیوما در نزدیک عصب بینایی دارد، در این صورت حتی نیم میلیمتر، هم برای ما اهمیت فراوان دارد، چون هر اشتباهی می‌تواند منجر به نابینایی مریض شود.

سایبرنایف، شیوه‌ای است که به وسیله دکتر جان آر آدلر، استاد جراحی مغز و اعصاب و پرتودرمانی دانشگاه استنفورد و همچنین پیتر و راسل شونبرگ از شرکت پژوهشی شونبرگ، بنیان نهاده شد. در این شیوه البته خبری از چاقوی واقعی نیست ولی پرتو تابانیده شده به مانند چاقویی دقیق و بدون درد، بدون اینکه نیاز به بیهوشی باشد، عرصه را بر سلول‌های سرطانی تنگ می‌کند.

سایبرنایف دو جزء اصلی دارد

- پرتوی که توسط یه شتاب‌دهنده خطی ذرات تولید می‌شود

- یک بازوی روباتیک که این باریکه انرژی تولید شده را به نقطه مورد نظر بدن، هدایت می‌کند

هدف‌گیری تومورها در سایبرنایف با دقت بیشتری، نسبت به شیوه‌های معمول صورت می‌گیرد. سایبرنایف نخستین بار در سال ۱۹۹۰معرفی شد. اولین بار از روبات «فانوک» ساخت ژاپن در سایبرنایف استفاده شد اما سیستم‌های مدرن‌تر از روبات آلمانی موسوم به KUKA KR 240استفاده می‌کنند.

پرتو اشعه ایکس تولیدی با انرژی شش مگاوات، انرژی دارد، سایبرنایف می‌تواند هر دقیقه ششصد سانتی گری انرژی پرتو بتاباند، اما مدل‌های جدیدتر می‌تواند هشتصد سانتی گری را منتقل کنند. این پرتوها با استفاده از موازی‌سازها ی  collimator   هایی موازی می‌شوند و روی نقطه مورد نظر با اندازه دلخواه که مثلا می‌تواند از پنج میلیمتر تا شصت میلیمتر متغیر باشد، متمرکز شود.

دور بیمار، دوربین‌های اشعه ایکس‌ای قرار داده می‌شوند که موقعیت آناتومیک عضو هدف را به دقت مشخص می‌کنند، موقعیت بدن، با جایگاه توده که به وسیله سی‌تی یا MRI مشخص شده است، مقایسه می‌شود و یک برنامه کامپیوتری با دقت بازوی روبات را هدایت می‌کند، طوری که پرتو با دقت به توده تابانیده شود.

می توان سایبر نایف را نیزبه این شکل نیز تعریف کرد

روباتی که به روشی غیر تهاجمی و با هدف قرار دادن بسیار پر قدرت و دقیق تومورسرطانی و یا غیر سرطانی ، به پرتو درمانی می پردازد که جایگزین بسیار مناسبی برای عملهای جراحی برای خارج کردن تومور است. با استفاده از عکسبرداری های لحظه ایی و دقت بالای این روبات هم اکنون پزشکان میتوانند سرطان هایی را که هیچگاه تصور نمی شد قابل درمان و یا در دسترس جراحان باشند را درمان کنند.

سایبر نایف با بازوی روباتیک خود و با پرتوهای هماهنگ و ارسال آن از مسیرهای چندگانه محل دقیق تومور را هدف و تومور را نابود کند . به وسیله این روش درمان ،میزان عوارض جانبی کاهش پیدا میکند زیرا این دستگاه پرتوهای تابشی را به محل دقیق تومور می تاباند و از درگیر کردن بافتهای سالم آن خودداری میشود بنابراین استفاده از این روش برای درمان تومورهایی که در محل های بسیار حساس (مانند تومور مغزی و یا تومور نخاع) بسیار مفید و حیاتی میباشد . به وسیله ی بازوهای روباتیک سایبر نایف دیگر نیازی به استفاده از قالب سر و فیکس کردن سر بیمار در پرتو درمانی تومور مغزی نیست و این درمان را برای بیمار بدون درد خواهد کرد.

به علاوه، تکنولوژی جدید سایبر نایف میتواند هدف های متحرک مانند سرطان شش و ریه را هم نابود کند. این دستگاه قابلیت تنظیم بر اساس حرکات مرتب سینه هنگام نفس کشیدن را دارد . این باعث میشود که دیگر نیازی به نگهداشتن نفس توسط بیمار نباشد و درمان با سرعت بیشتری پیش رود. بدون هیچ برش و یا بیهوشی در طول درمان، اکثر بیماران میتوانند پس از پایان جلسه درمان به زندگی عادی خود برگشته و به فعالیت روزانه خود بپردازند.

برای نابود کردن تومور اعضایی که حین عمل ثابت نیستند و حرکت می‌کنند مثل با تومور ریه و پانکراس باید چه کار کرد؟ اگر از فناوری مناسبی استفاده نشود، در حین پرتودرمانی، اعضای سالم مجاور توده، هم در معرض توده قرار می‌گیرند و میزان پرتودهی توده هم کاهش می‌یابد.برای این منظور، از سیستمی به نام سیستم همگام‌سازی استفاده می‌شود. در این شیوه الیاف اپتیکی روی پوست شکم قرار داده می‌شوند که حرکت شکم را حین پرتودهی مشخص می‌کنند، یک الگوریتم کامپیوتری میزان حرکت شکم را محاسبه می‌کند و به بازوی روباتیک دستور می‌دهد که متناسب با حرکت شکم، تغییر جهت دهد.

نتیجه عمل به وسیله سایبر نایف در بسیاری ازغدد سرطانی بدن مخصوصا مغز، نخاع ، شش ، کلیه ،پانکراس ،ستون فقرات و پروستات شگفت انگیز است و درصد بسیار بالایی از بیمارن هیچ گاه دیگربه بیمارستان بر نمیگردند. باید در نظر گرفت که سایبر نایف برای تمامی تومورهای سرطان قابل استفاده نمیباشد بعنوان مثال نمیتوان از سایبر نایف جهت درمان سرطان سینه و یا کولون استفاده نمود.

نحوه کلی درمان بوسیله سیستم روباتیک سایبر نایف به صورت زیر است

مرحله اول : بسته به نوع تومور سرطان از بیمار ام آر آی و یا سی تی اسکن تهیه میشود.

مرحله دوم : اطلاعات سی تی اسکن و ام آر آی به سیستم کامپیوتری سایبرنایف جهت برنامه ریزی درمان داده میشود .نرم افزار پیشرفته این سیستم روباتیک به صورت بسیار دقیق برای نابود کردن تومور ،نوع ،مقدار و جهت تابش پرتو را برنامه ریزی میکند . در این مرحله با نظر متخصص مشخص میگردد چند جلسه برای درمان تومور کافی میباشد.

مرحله سوم : بیمار به اتاق سایبر نایف انتقال پیدا کرده و بر روی تخت دراز میکشد و در حالی که ماسکی بر روی صورت دارد و به موسیقی گوش میکند و بدون درد مورد درمان قرار میگیرد. معمولا هر دوره کمتر از ۵۰دقیقه به طول میانجامد و بیمار میتواند بعد از آن به محل اقامت خود بازگردد.

بسته به نوع تومور تعداد جلسات سایبر نایف مشخص میشود که به صورت معمول بین ۳تا ۱۰جلسه خواهد بود هر چند در تومورهای پیشرفته جلسات بیشتری نیاز است.

یکی از ویژگی های سایبر نایف این است که می‌توان بین جلسات درمانی فاصله انداخت که از نظر بالینی گاهی مفید است. علت این است که سلول‌های سرطانی مکانیسم ترمیم ضعیف‌تری نسبت به سلول های سالم دارند، در فاصله بین جلسات سایبرنایف، سلول‌های سالم غیرسرطانی می‌توانند ترمیم شوند، در حالی که هنوز سلول‌های سرطانی ترمیم پیدا نکرده‌اند. چنین فاصله‌اندازی بین جلسات درمان را نمی‌توان در شیوه‌های روتین، اعمال کرد.روش‌های پرتودرمانی روتین ممکن است به جلسات روزانه نیاز داشته باشند که ممکن است نهایتا چند هفته طول بکشند.

سایبر نایف شیوه ای جدید برای درمان سرطان

سایبر نایف روشی برای درمان سرطان کنسرسیوم ایرکاس

 

تصویر بردارى زیستى به کمک نانوذرات www.ircas.ir

تصویر بردارى زیستى به کمک نانوذرات

کاربردهاي بيومديکال نانوذرات در تصوير برداري مولکولي، دارورساني و درمان باعث ظهور زمينه “نانوپزشکي” شده اند و پيشرفت هاي قابل توجهي در دهه هاي اخير در سراسر دنيا گزارش شده است. نسل جديدي از پروب هاي تصوير برداري (يا عوامل کنتراست) و استراتژي های نوآورانه براي تصوير برداري چند مُدی با بازده بالا توجه بسياری را به خود جلب کرده و در کاربرد های پيش کلينيکي موفق بوده است. با اين پيش زمينه در اين مقاله اصول و پيشرفت های اخير اين زمينه براي ترسيم چشم اندازی کلي مورد بحث قرار خواهد گرفت.

نانوتکنولوژی يا به عبارت ديگر نانوتک در دهه هاي اخير پيشرفت خيره کننده ای در همه زمينه های علم و فناوری از جمله زمينه های زيست شناسی و پزشکی داشته است. امروزه علم نانو تنها به سنتز، شناسايی و تهيه ساده نانومواد محدود نيست بلکه راه خود را به کاربرد های نهايی و مهندسی حتی در بخش های صنعتی همچون الکترونيک، مخابرات، انرژی، هوافضا و طبعاً زيست پزشکي گشوده است. طبق تعريف NNI ذرات نانوسايز با قطری بين ۱ الي ۱۰۰ نانومتر شناخته مي شوند. اين مواد خواص نوری، الکتريکی و ساختاري ويژه اي از خود نشان مي دهند که آن ها را از مواد با اندازه بزرگ تر و همچنين از اتم ها و مولکول هاي سازنده متمايز مي کند. استفاده از اين مواد در پزشکی هم در زمينه های پيش- کلينيکی و هم در پژوهش های کلينيکی در سراسر جهان شناخته شده است.

در دهه های اخير تکنيک های سنتی تصوير برداری برای تحقيقات روتين و استفاده های کلينيکی گسترش بسياری يافته اند. اين تکنيک ها از جمله تصوير برداری نوری، توموگرافی محاسبه شده، تصوير برداری رزونانس مغناطيسی، اولتراسوند و تصوير برداری راديوايزوتوپ به طور عام در زمينه های مختلف از تصوير برداری تحقيقاتی از حيوانات کوچک گرفته تا تصوير برداری پيش- کلينيکی و تصوير برداری کلينيکی از بدن انسان، تشخيص پزشکی و حتی درمان مورد استفاده اند.
تفاوت تصوير برداری مولکولی نسبت به تصوير برداری سنتي در پروب هايی است که به نام بيومارکر شناخته مي شوند و به طور کاملاً انتخابی با محيط اطراف اندرکنش می کنند و به نوبه خود با تغييرات مولکولی در ناحيه مورد نظر روی تصوير تأثير می گذارند.

تصوير برداری مولکولی

از ميان کاربرد هاي نانوپزشکي، تصوير برداري مولکولي يکي از زمينه هاي جذاب و در حال پيشرفت سريع است. طبق تعريف جامعه پزشکي هسته اي، تصوير برداري مولکولی “تجسم، شناخت و اندازه گيری فرآيند های زيستی در سطح مولکولی و سلولی انسان و ساير ارگانيسم هاست” زمينه ای بين رشته ای که شيمی، بيولوژی، داروسازی و پزشکی را برای تشخيص فرآيند های زيستی چه به صورت درون بافت زنده و چه به صورت آزمايشگاهی ترکيب مي کند و به کمک آن مي توان تغييرات فيزيولوژيک را تعيين کرد و براي تشخيص آناتوميک تغييرات به کار بست که اطلاعات کلينيکی قيمتي برای انتخاب استراتژی درمان در مورد بيماری های مختلف از جمله سرطان، التهاب، سکته، تصلب شريان، آلزايمر و بسياری ديگر به دست مي دهد. به علاوه نانوذرات قابل طراحي به عنوان حامل در دارورساني و همچنين حمل ژن مورد مطالعه قرار گرفته اند.

 تصویر برداری زیستی www.ircas.ir

نانومواد

انتظار مي رود ذرات داراي ابعاد در محدوده نانومتری به علت داشتن خواصی چون سطح ويژه بسيار بالا و عامل دار بودن ذاتی و قابليت اصلاح ساختاری و سطحی رفتار های فيزيکی و زيستی ويژه ای از خود نشان دهند. همچنين اندرکنش آن ها با مولکول های زيستی قابل توجه است. اصلاح اين مواد براي تغيير در کينتيک دارويی، افزايش طول عمر شريانی، بهبود قابليت آن ها براي ورود به جريان خون و حصول اطمينان از پخش شدن آن ها در بافت زنده و رهاسازی کنترل شده داروی مورد نظر انجام مي پذيرد. به علاوه با جفت کردن ليگاند های هدف دار با نانومواد می توان توانايی هدف گيری دقيق ناحيه بيماری را در آن ها ايجاد نمود. در اين مقاله تنها کاربرد های تصوير برداری نانومواد مّد نظر است و از بحث بيش تر در باب دارورسانی پرهيز مي شود.

نانو مواد www.ircas.ir

به علاوه با جفت کردن لیگاند های هدف دار با نانومواد می توان توانایی هدف گیری دقیق ناحیه بیماری را در آن ها ایجاد نمود. در این مقاله تنها کاربرد های تصویر برداری نانومواد مّد نظر است و از بحث بیش تر در باب دارورسانی پرهیز می شود در دهه های اخیر تکنیک های سنتی تصویر برداری برای تحقیقات روتین و استفاده های کلینیکی گسترش بسیاری یافته اند.

نانو مواد

این تکنیک ها از جمله تصویر برداری نوری، توموگرافی محاسبه شده، تصویر برداری رزونانس مغناطیسی، اولتراسوند و تصویر برداری رادیوایزوتوپ به طور عام در زمینه های مختلف از تصویر برداری تحقیقاتی از حیوانات کوچک گرفته تا تصویر برداری پیش- کلینیکی و تصویر برداری کلینیکی از بدن انسان، تشخیص پزشکی و حتی درمان مورد استفاده اند.تفاوت تصویر برداری مولکولی نسبت به تصویر برداری سنتی در پروب هایی است که به نام بیومارکر شناخته می شوند

و به طور کاملاً انتخابی با محیط اطراف اندرکنش می کنند و به نوبه خود با تغییرات مولکولی در ناحیه مورد نظر روی تصویر تأثیر می گذارند.در ادامه به عنوان یک مطالعه موردی جالب، استفاده از نانوذرات اکسید آهن سوپر پارامغناطیس به عنوان عامل سازنده کنتراست در MRI مورد بررسی قرار خواهد گرفت. با پیشرفت سریع نانوتکنولوژی، روش های سنتز متفاوتی برای بدست آوردن این نانوذرات با بلورینگی، سایز و توزیع اندازه و همچنین پوشش های متفاوت گسترش یافته اند. در کمتر از یک اندازه بحرانی نانوذرات اکسید آهن دارای یک دومین مغناطیسی هستند و خاصیت سوپرپارامغناطیس از خود نشان می دهند

البته خواص مغناطیسی نانوذرات به سایز و شکل ذرات، میکروساختار و فاز شیمیایی آن ها بستگی دارد. این نانوذرات پتانسیل عظیمی برای کاربرد های زیست پزشکی گوناگون دارند که در جدول ۱ خلاصه آن ها مشاهده شد. این نانوذرات به علت داشتن میدان مغناطیسی بزرگ و همچنین خواص سطحی مناسب هم برای کاربرد های MRI درون بافت زنده و هم در آزمایشگاه مناسب اند.

بر حسب اندازه هیدرودینامیک، نانوذرات اکسید آهن به سه دسته تقسیم می شوند:هدف گیری مولکول های سطحی سلول ها با اکسید آهن ممکن است . همچنین رسپتور های خاص همچون Her-2/Neu به کمک نانوذارت آهن به صورت رزونانس مغناطیسی قابل نشان گذاری است . همچنین تشخیص مولکولی پلاک های تصلب شریانی به کمک این نانوذرات گزارش شده است.

پپتید انتخاب شده با نمایش باکتری خوار روی USPIO پیوند زده شد و نانوسیستم حاصل روی سلول های شریان سیاهرگ بطنی اندوتلیوم انسانی و سپس با MRI روی موش آزمایش شد. کاربرد های پزشکی و زیستی نانومواد (نانوذرات، نانوسیالات مغناطیسی و غیره) در سطح جهانی مورد توجه وسیع هستند. در تمام موارد اندازه، توزیع اندازه و شیمی سطح پارامتر های اساسی در کنترل و بهینه سازی اثر و زیست فعالی مواد هستند.

البته نمی توان یک نوع ماده را برای تمام کاربرد های زیستی ساخت و گسترش داد و نیاز به تحقیق و توسعه فراوان برای تبدیل کاربرد های بالقوه به فعل احساس می شود. لازم است پروتکل هایی برای سنتز و اصلاح نانومواد در کاربرد های زیستی تدوین شود. توجه به این نکته ضروری است

که دانش اثر نانوذرات بر سلامت انسان بسیار محدود است بنابراین مطالعات نانوسم شناسی روی اثرات نانوساختار های مصنوع بر ارگانیسم های زنده از اهمیت بالایی برخوردار است

همچنين جدول ۱برخی از مهم ترين نانومواد مورد استفاده در نانوپزشکی و کاربرد های آن ها را خلاصه می کند.

 چند دسته نانو ذره-و کاربردش در نانو پزشکی www.ircas.ir

جدول ۱) ويژگی های چند دسته نانوذره مهم و کاربرد های زيست پزشکی آن ها

نانوذرات سوپرپارامغناطيس آهن

در ادامه به عنوان يک مطالعه موردی جالب، استفاده از نانوذرات اکسيد آهن سوپر پارامغناطيس به عنوان عامل سازنده کنتراست در MRI مورد بررسي قرار خواهد گرفت. با پيشرفت سريع نانوتکنولوژی، روش های سنتز متفاوتی براي بدست آوردن اين نانوذرات با بلورينگي، سايز و توزيع اندازه و همچنين پوشش های متفاوت گسترش يافته اند. در کمتر از يک اندازه بحراني نانوذرات اکسيد آهن داراي يک دومين مغناطيسی هستند و خاصيت سوپرپارامغناطيس از خود نشان مي دهند البته خواص مغناطيسی نانوذرات به سايز و شکل ذرات، ميکروساختار و فاز شيميايی آن ها بستگی دارد. اين نانوذرات پتانسيل عظيمی براي کاربرد های زيست پزشکی گوناگون دارند که در جدول ۱ خلاصه آن ها مشاهده شد. اين نانوذرات به علت داشتن میدان مغناطيسی بزرگ و همچنين خواص سطحی مناسب هم برای کاربرد های MRI درون بافت زنده و هم در آزمايشگاه مناسب اند. بر حسب اندازه هيدروديناميک، نانوذرات اکسيد آهن به سه دسته تقسيم مي شوند:

۱ اکسيد آهن سوپرپارامغناطيس بسيار کوچک که قطر هيدروديناميک کمتر از ۵۰ نانومتر دارند. که البته خود به دسته های کوچک تری هم تقسيم مي شوند که از حوصله بحث خارج است.
۲ – اکسيد آهن سوپرپارامغناطيس که قطر هيدروديناميک بزرگ تر از ۵۰ نانومتر دارد.
۳ ذرات اکسيد آهن ميکرون

نانوذرات اکسيد آهن به عنوان پروب های مولکولی در MRI

هدف گيری مولکول های سطحی سلول ها با اکسيد آهن ممکن است . همچنين رسپتور های خاص همچون Her-2/Neu به کمک نانوذارت آهن به صورت رزونانس مغناطيسی قابل نشان گذاری است . همچنين تشخيص مولکولی پلاک های تصلب شريانی به کمک اين نانوذرات گزارش شده است. پپتيد انتخاب شده با نمايش باکتری خوار روي USPIO پيوند زده شد و نانوسيستم حاصل روي سلول های شريان سياهرگ بطنی اندوتليوم انسانی و سپس با MRI روی موش آزمايش شد. 

نانوذرات اکسيد آهن به عنوان پروب های مولکولی در MRI

نتيجه گيری

کاربرد های پزشکی و زيستی نانومواد (نانوذرات، نانوسيالات مغناطيسي و غيره) در سطح جهانی مورد توجه وسيع هستند. در تمام موارد اندازه، توزيع اندازه و شيمی سطح پارامتر های اساسي در کنترل و بهينه سازي اثر و زيست فعالي مواد هستند. البته نمي توان يک نوع ماده را براي تمام کاربرد هاي زيستي ساخت و گسترش داد و نياز به تحقيق و توسعه فراوان براي تبديل کاربرد هاي بالقوه به فعل احساس مي شود. لازم است پروتکل هايی براي سنتز و اصلاح نانومواد در کاربرد هاي زيستی تدوين شود. توجه به اين نکته ضروری است که دانش اثر نانوذرات بر سلامت انسان بسيار محدود است بنابراين مطالعات نانوسم شناسی روی اثرات نانوساختار های مصنوع بر ارگانيسم های زنده از اهميت بالايی برخوردار است.

ساخت چشم مصنوعی

نگاهی طبیعی از ورای یک چشم مصنوعی

صدمات ناشی از حوادث، بیماری، نابینایی مادرزادی و سرطان ، ممکن است به از دست رفتن یک یا هر دو چشم منجر شود. اما نداشتن چشم لزوما به معنای داشتن ظاهری نازیبا نیست. با پیشرفت های صورت گرفته در زمینه ساخت ایمپلنت های چشمی، در اکثر موارد به لحاظ زیبایی ظاهری نتایج بسیار مطلوبی از این جراحی ها به دست آمده است.

در دنیای باستان، به ویژه مصر، چشم نماد زندگی بود. رومی ها مجسمه های خود را با چشم هایی از جنس نقره می آراستند. اما جراحی فرانسوی به نام Ambrose Par (1590-1510)، اولین چشم مصنوعی را ساخت که کاملا در کاسه چشم قرار می گرفت. این قطعه از طلا و نقره ساخته شده بود. با ابداع شیشه های کرایولیتی (از جنس فلورید سدیم آلومینیوم و اکسید آرسنیک)، ماده ای نسبتا سفید رنگ به دست آمد که برای پروتز چشمی مناسب به نظر می رسید. این کشف در سال 1835 به نام متخصصان آلمانی ثبت شده است. در آن زمان برای ساختن چشم مصنوعی، به انتهای یک لوله شیشه ای آنقدر حرارت داده می شد تا به شکل گوی درآید. سپس ترکیب های مختلفی از رنگ شیشه برای طبیعی تر جلوه کردن پروتز استفاده می شد. چشم پزشکان معمولا صدها نمونه از این چشم های مصنوعی را در مطب خود نگهداری می کردند. سپس با آزمون و خطا و امتحان کردن تعدادی از چشم های مصنوعی، بهترین پروتزی را که در کاسه چشم جا می افتاد انتخاب کرده و به بیمار تحویل می دادند.

تولید چشم مصنوعی تا سال های متمادی در انحصار آلمان بود. در جریان جنگ جهانی دوم و با قطع صادرات چشم مصنوعی شیشه ای از آلمان، مهندسان ارتش آمریکا به همراه چندین تیم پزشکی غیر نظامی توانستند ترکیبی جدید به وسیله ترکیب رنگدانه های روغنی و پلاستیک ایجاد کنند. از این زمان به بعد، پروتز های پلاستیکی به پروتز های شیشه ای ترجیح داده شدند.

اماآنچه که امروزه نگاهی شبه طبیعی به یک چشم مصنوعی داده است، اختراع " ایمپلنت چشمی" است. چشم های مصنوعی امروزی دارای قابلیت حرکت به اطراف هستند که جلوه ای طبیعی به آن ها داده است

برخی از موارد استفاده از چشم مصنوعی به شرح زیر هستند:

- بیماری مادرزادی به نام Microphthalmia ، در این بیماری به علتی ناشناخته، رشد چشم کامل نشده و کوچک می ماند. این چشم ها کاملا نابینا هستند و شاید در بهترین حالت دارای اندکی ادراک نور باشند.

- برخی افراد در هنگام تولد فاقد یک یا هر دو چشم هستند. این بیماری Anophthalmia نام دارد و یکی از مشکل ترین موارد کارگذاری چشم مصنوعی است.

- بیماری ارثی Retinoblastomaکه ناشی از بروز سرطان یا تومور است. احتمال از دست دادن چشم در اثر این بیماری 25 الی 50 درصد (با توجه به بروز بیماری در یک یا هر دو چشم) برآورد می شود

اجزای چشم مصنوعی

پیش از جایگذاری چشم مصنوعی، باید یک مرحله اصلی انجام شده باشد. اولین گام خارج کردن چشم بیمار یا آسیب دیده (enucleation) توسط جراح متخصص است. اما آنچه که در این مرحله بسیار حیاتی است، حفظ عضلات متصل به صلبیه (سفیده چشم) است. کارگذاری چشم مصنوعی بلافاصله پس از جراحی تخلیه چشم انجام می گیرد. سپس جراح عصب بینایی را قطع می کند. هسته اصلی پروتز چشمی، "ایمپلنت چشمی" است. این ایمپلنت در کره چشم قرار می گیرد تا حجم چشم حفظ شود. نقش دیگر ایمپلنت، حفظ حرکات طبیعی چشم است. امروزه ایمپلنت های چشمی از مواد Porous (خلل و فرج دار) ساخته می شوند. در نتیجه، رگ های خونی می توانند در منافذ ایمپلنت رشد کنند. این ماده از جنس Porous Polyethylene است که به صورت synthethic (کارخانه ای ) تهیه می شود. از آنجا که ساختار مواد Porous همانند مرجان یا بافت استخوان اسفنجی است، امکان ادغام ایمپلنت با سلول های بدن فراهم می شود. از مزایای این ادغام می توان به موارد زیر اشاره کرد:

. - کاهش احتمال پس زنی ایمپلنت توسط سیستم ایمنی

- حفظ پاکیزگی ایمپلنت به صورت بخشی از نظام طبیعی بدن.

عصب بینایی در پشت ایمپلنت قطع می شود. از بین 6 عضله حرکتی چشم، چهار عضله به ایمپلنت متصل می شوند. به این ترتیب حرکات چشم تا حد بسیار زیادی به طور طبیعی جلوه خواهد کرد. سپس بافت ملتحمه (غشاء مخاطی درون کره چشم و پلک ها) بر روی ایمپلنت کشیده می شود. درانتها یک conformer (دیسک پلاستیکی یا سیلیکونی) در جلوی چشم قرار می گیرد که پس از بهبودی کامل محل جراحی، این قطعه با پروتز جایگزین می شود.

در فضای باقیمانده، خارجی ترین قطعه یعنی "پروتز چشم مصنوعی" جای می گیرد. این قطعه به صورت سفارشی و بر اساس مشخصات فردی (شامل رنگ چشم) ساخته شده و تنها بخش removable (برداشته شدنی) است. زمان کارگذاری پروتز تا هنگام بهبودی کامل کره چشم پس از جراحی و برداستن conformer به تعویق می افتد.

مراحل ساخت پروتز چشمی

همان طور که پیش تر اشاره شد، پروتز چشمی در واقع خارجی ترین بخش یک چشم مصنوعی است. این قطعه به صورت دست ساز تهیه می شود و پس از بهبودی کامل چشم (حداقل 6 هفته پس از جراحی) در جای خود قرار می گیرد. بلافاصله پس از جراحی، به جای پروتز یک کانفورمر (وسیله لنز مانند و شفاف) در بخش جلویی ایمپلنت قرار می گیرد تا با نگه داشتن پلک ها در جای خود، به شکل گیری کاسه چشم در حین بهبودی کمک کند. در واقع کانفورمر یک پوسته محدب است که از خلال آن می توان ملتحمه را مشاهده کرد. پس از بهبودی کامل چشم، کار ساخت پروتز آغاز می شود. برای این کار، از کاسه چشم و فضای محصور بین پلک ها و ملتحمه قالب گیری می شود. این مرحله ممکن است چندین بار تکرار شود. جنس ماده استفاده شده برای قالب گیری مشابه موادی است که برای قالب گیری از دندان ها به کار می روند. از این قالب، نمونه مومی اولیه به دست می آید. نمونه مومی در کاسه چشم قرار می گیرد تا از نظر ضخامت و جایگیری امتحان شود. ضخامت پروتز، اصلی ترین عامل در تعیین نحوه قرارگیری پلک ها است. چرا که اگر ضخامت بیشتر از حد لازم باشد، چشم ها بیش از اندازه باز می مانند. پس از دستیابی به شکل دلخواه، محل مردمک چشم با الگوگیری از چشم سالم تعیین می شود. سپس پروتز نهایی از مواد مطلوب ساخته می شود. رنگ چشم مصنوعی نیز با الگوگیری از چشم سالم تعیین شده و نقاشی می شود. عنبیه و صلبیه به دقت و با دست نقاشی می شوند. رگ های خونی و شیارهایی نیز برای طبیعی تر جلوه کردن نمونه نهایی به صورت دستی نقاشی میشوند.پس از اینکه عنبیه نقاشی شد، توسط دستگاه تراش، خطوطی روی آن ایجاد می شود. قطر عنبیه دقیقا مطابق با چشم سالم طراحی می شود. این قطر معمولا در رنج 10 تا 13 میلی متر قرار دارد. برای از بین بردن هرگونه ناصافی، سطح پروتز پولیش می شود. در آخرین مرحله، سطح پروتز با یک لایه محافظ پوشش داده می شود. پاکیزگی پروتز باید به طور منظم انجام گیرد و حداقل یک بار در سال به صورت حرفه ای پولیش شود

اکثر مردم در عرض چند ساعت به استفاده از چشم مصنوعی عادت می کنند، به طوری که بعد از چند روز حضور فیزیکی آن را احساس نمی کنند. عمر متوسط یک چشم مصنوعی از جنس پلاستیک در حدود 10 سال است. اما در کودکان به علت تغییرات سریع در حین فرآیند رشد، طول عمر پروتز کوتاه تر است. به طور کلی هر فرد به چهار الی پنج پروتز در دوره کودکی تا بزرگسالی نیاز دارد.

مواد اولیه

اصلی ترین ماده به کار رفته در ساخت چشم مصنوعی، پلاستیک است. برای قالب گیری نیز از موم یا گچ استفاده می شود. در طی فرایند قالب گیری از پودری سفید رنگ از جنس آلگینات استفاده می شود. برای رنگ آمیزی از طیف های مختلف رنگ استفاده می شود

چشم مصنوعی

نگهداری از پروتز چشمی

چشم مصنوعی را هرگز نباید با الکل یا حلال های دیگر تمیز کرد . این کار باعث از بین رفتن پروتز خواهد شد. در صورت برداشتن پروتز، باید آن را فقط درون آب یا محلول نمک یا محلول لنز تماسی قرار داد . این امر مانع از خشک شدن رسوبات بر روی سطح پروتز می شود. برای شستشو باید از مواد شوینده دارای PH خنثی استفاده کرد. برای خشک کردن پروتز باید از دستمال پنبه ای و نرم استفاده شود تا در سطح پروتز خراشیدگی ایجاد نشود.

نگاهی به آینده

با پیشرفت روزافزون علوم کامپیوتر، الکترونیک، و تکنولوژی مهندسی پزشکی، ممکن است به زودی چشم های مصنوعی ساخته شوند که حس بینایی را نیز فراهم کنند. این رویا با ساخت میکروالکترودها و تکنیک های پیچیده تشخیص تصاویر تا حدودی محقق شده است. محققان در حال ساخت اولین نمونه های شبکیه مصنوعی (artificial retina) هستند. عملکرد شبکیه مصنوعی بر اساس تکنولوژی بایوچیپ است. بیوچیپ ها به سلول های گانگلیون(جمع آوری کنندگان اطلاعات دریافتی چشم) متصل می شوند. در سطح شبکیه ای این بیوچبپ ها، یک آرایه اکترودی و در سطح مردمکی آن ها یک سنسور قرار می گیرد. سنسور در قبال مقدار دوز لیزر دریافتی از عینک فرد دارنده چشم مصنوعی ، پاسخی را به آرایه الکترودی ارسال می کند. امید است که در آینده نزدیک، از دست دادن چشم تا حدود زیادی قابل جبران بوده و تاثیر کمتری بر زندگی افراد ایجاد کند.

ساخت چشم مصنوعی در مهندسی پزشکی

گروهی از محققان مهندسی پزشکی biomedical engineering دانشگاه «موناش» در کلیتون استرالیا، توانسته‌اند تکنولوژی جدیدی برای بازگرداندن بینایی افراد بسازند. با استفاده از این تکنولوژی جدید که طبق گفته‌ی محققان، به طور کلی سیستم بینایی را دور می‌زند، تا حدودی می توان بینایی افراد را به آنها بازگرداند.

در این تکنولوژی جدید مهندسی پزشکی تصاویر ضبط شده را به صورت ساده شده و در ۵۰۰پیکسل به افراد نابینا نشان می‌دهند.

این تکنولوژی جدید، با استفاده از یک دوربین دیجیتال که به عینکی متصل شده است کار می‌کند این دوربین تصاویر را به ریزپردازنده‌ای می‌فرستد و این تصاویر پس از پردازش تصویر، به مغز فرستاده می‌شوند.

البته فرستادن داده به مغز به همین سادگی‌ها هم نیست. این تیم تحقیقاتی ۱۱بخش مختلف مغز را به دوربین متصل کرده‌ است و این ۱۱بخش هر کدام از ۴۳الکترود تشکیل شده‌اند این محققان می‌خواهند محدوده‌ی دید ۵۰۰پیکسلی را برای افراد نابینا بسازند.

این تکنولوژی جدید می‌تواند حتی به افرادی که چشم ندارند، توانایی دیدن اهدا کند. «آرتور لاوری» از محققان دانشگاه کلیتون است و روی این ایده‌ی جدید کار می‌کند. او می‌گوید:‌ “اصلا لازم نیست حتی حدقه‌ی چشم داشته باشید.“

پردازنده‌ی همراه دوربین باید توسط کاربر حمل شود. این پردازنده می‌تواند قسمت‌های مهم تصاویر ضبط شده را ببیند و آن‌ها را در ۵۰۰پیکسلی که افراد خواهند دید نمایش دهد. لاوری درباره‌ی پردازنده می‌گوید: “این پردازنده مثل یک کارتونیست می‌ماند؛ یعنی باید یک موقعیت پیچیده را با کمترین میزان اطلاعات نشان دهد.” او می‌گوید که مثلا می‌توان یک چهره‌ی انسان را با ده نقطه به تصویر کشید.

ساخت چشم مصنوعی در مهندسی پزشکی biomedical engineering شاید ابتدایی و محدود به نظر برسد، اما برای کسانی که توانایی دیدن‌شان را از دست داده‌اند می‌تواند بسیار مهم باشد.

ساخت چشم مصنوعی در مهندسی پزشکی 2

اخیرا نیز زنی در ایالت کلرادوی امریکا، چشمی الکترونیکی دریافت کرده و توانسته است تا بینایی‌اش را دوباره به دست بیاورد.این زن با استفاده از چشم الکترونیکی پیوند زده شده، می‌تواند اجسام و شکل‌های مختلف را از یکدیگر تشخیص داد.

«جیمی کارلی» ۱۵سال پیش و به دلیل بیماری رتینیت پیگمانتر (Retinitis pigmentosa)، بینایی‌اش را از دست داده بود. این بیماری، سلول‌های شبکیه‌ی چشم را به تدریج نابود می‌کند و چشم را از کار می‌اندازد.

جراحان بیمارستان دانشگاه کلرادو، طی یک عمل ۵ساعته، چشمی الکترونیکی به کارلی پیوند زدند. این چشم مصنوعی میکروتراشه‌ای دارد که به یک دوربین کوچک متصل است. تصاویری که این دوربین می‌گیرد، به میکروتراشه فرستاده می‌شود. این تراشه هم سپس اعصاب بینایی را تحریک می‌کند و اطلاعات تصاویر را پس از پردازش تصویر به مغز می‌فرستد.

البته کارلی نمی‌تواند مثل یک فرد معمولی با چشم الکترونیکی‌ اش نگاه کند. دکتر «نارش ماندوا» که جراحی را انجام داده می‌گوید: “نکته‌ی مهم این است که این چشم مصنوعی کار می‌کند. این چشم به کارلی کمک می‌کند تا در خانه‌اش حرکت کند، به خرید برود و اشکال را تشخیص دهد.با این اوصاف، تا دیدن چشم «آدام جنسن» در Deus Ex فاصله‌ی زیادی داریم.

آیین نامه تجهیزات پزشکی بخش اول

بخش اول آیین نامه تجهیزات پزشکی

اصل یکصدو سی وهشتم قانون اساسی جمهوری اسلامی ایران

علاوه بر مواردی که هیات وزیران یا وزیری مامور تدوین آیین نامه های اجرایی قوانین می شود، هیات وزیران حق دارد برای انجام وظایف اداری و تامین اجرای قوانین و تنظیم سازمان های اداری به وضع تصویب نامه و آیین نامه بپردازد، هر یک از وزیران نیز در حدود وظایف خویش و مصوبات هیات وزیران حق وضع آیین نامه و صدور بخشنامه را دارد ولی مفاد این مقررات نباید با متن و روح قوانین مخالف باشد. دولت می تواند تصویب برخی از امور مربوط به وظایف خود را به کمیسیون های متشکل از چند وزیر واگذار نماید.مصوبات این کمیسیون ها در محدوده قوانین پس از تایید رییس جمهور لازم الاجرا است. تصویب نامه ها و آیین نامه های دولت و مصوبات کمیسیون های مذکور در این اصل، ضمن ابلاغ برای اجرا به اطلاع رییس مجلس شورای اسلامی می رسد. تا درصورتی که آنها را برخلاف قوانین بیابد با ذکر دلیل برای تجدید نظر به هیات وزیران بفرستد.

قانون مربوط به مقررات امور پزشکی و دارویی‌ و مواد خوردنی و آشامیدنی‌ مصوب خردادماه ۱۳۳۴و اصلاحات سالهای ۷۴و ۶۷                                            

تبصره   ۲ماده ۳ : در صورتی که هریک از مسؤولین موضوع ماده (۳) و یا مسؤولین مراکز ساخت‌، تهیه‌،توزیع و فروش دارو، تجهیزات و ملزومات پزشکی مبادرت به خرید و فروش غیر قانونی مواردفوق(دارو) نماید و یا از توزیع و ارائه خدمات خودداری و یا موجب اخلال در نظام توزیعی دارویی کشور شوند علاوه بر مجازات مقرر در ماده(۳) به محرومیت از اشتغال در امور دارویی محکوم خواهند شد.

تبصره   ۵ماده ۱۳ : فعالیت افراد مؤسسات و نمایندگیهای شرکتهای دارویی و تجهیزات و ملزومات ‌پزشکی‌، تجهیزات دندان پزشکی مشمول آیین‌نامه‌ای خواهد بود که حداکثر ظرف مدت سه ماه تهیه و به ‌تصویب وزیر بهداشت‌، درمان و آموزش پزشکی برسد.

تبصره   ۲ماده ۱۴ : ساخت و یا ورود هرنوع مواد و ملزومات مصرفی و تجهیزات پزشکی و تجهیزات دندانپزشکی ویا مواد اولیه و بسته‌بندی آنها که لیست آن از طرف وزارت بهداشت‌، درمان و آموزش پزشکی اعلام‌ می‌گردد باید با اجازه قبلی و موافقت وزارت بهداشت‌، درمان و آموزش   پزشکی انجام گیرد، ترخیص‌اقلام مذکور از گمرک نیز باید با کسب اجازه و از وزارت بهداشت‌، درمان و آموزش پزشکی باشد.به منظور نظام‏ مند نمودن و نظارت بر فرآیند تولید، واردات، ترخیص، صادرات، حمل و نقل و انبارش، توزیع، عرضه، نصب، راه اندازی و خدمات پس از فروش ،نگهداشت ، قیمت گذاری و امحاء تجهیزات پزشکی از جمله اقلام مصرفی، نیمه مصرفی،دستگاهی، تشخیصی، جراحی، آزمایشگاهی تشخیص پزشکی، درمانی، مراقبتی، دندانپزشکی ، توانبخشی و مواد اولیه تولید این اقلام، به استناد بندهای ۱۱، ۱۲، ۱۳، ۱۷ماده یک قانون تشکیلات و وظایف وزارت بهداشت، درمان و آموزش پزشکی و ماده ۸قانون تشکیل وزارت بهداشت، درمان و آموزش پزشکی و تبصره ۲ماده ۳، تبصره ۵ماده ۱۳، تبصره ۲ماده ۱۴و مواد ۲۴و ۲۵قانون مربوط به مقررات امور پزشکی و دارویی و مواد خوردنی و آشامیدنی آیین‏نامه تجهیزات و ملزومات پزشکی به شرح ذیل تصویب می‏شود.

آیین نامه تجهیزات پزشکی

تعاریف و اختصارات آیین نامه تجهیزات پزشکی

ماده ۱ عبارات و اصطلاحات مندرج در آیین‏ نامه تجهیزات پزشکی به شرح ذیل تعریف می‌شوند:

الف- شخص حقوقی: کلیه شرکتها، موسسات، سازمانها، مراکز آموزشی تحقیقاتی پژوهشی، دانشگاهها، نهادهای عمومی غیر دولتی و دستگاههایی که شمول قانون بر آنها مستلزم ذکر یا تصریح نام است که به موجب مفاد این آیین نامه و دستورالعمل‏های ابلاغی و اهداف مندرج در اساسنامه مجاز به فعالیت در زمینه تامین، ساخت، واردات، ترخیص، نگهداشت، انبارش، حمل و نقل، توزیع، عرضه، صادرات، خدمات پس از فروش، پشتیبانی، اقدامات آموزشی و پژوهشی و تحقیقاتی، کنترل کیفی و مشاوره تجهیزات و ملزومات پزشکی در کشور می‌باشند.

ب- شخص حقیقی : کلیه اشخاص دارای کارت بازرگانی فعال و معتبر، دارندگان پروانه کسب صنفی معتبرو صاحبان حرف پزشکی که به موجب مفاد این آیین نامه و دستورالعمل‏های ابلاغی مجاز به فعالیت در زمینه نگهداشت، عرضه، صادرات، خدمات پس از فروش، پشتیبانی، اقدامات آموزشی و پژوهشی، کنترل کیفی و مشاوره تجهیزات و ملزومات پزشکی در کشور میباشند. تامین، ساخت، ورود و ترخیص تجهیزات و ملزومات پزشکی توسط اشخاص حقیقی صرفاً در موارد خاص با تصویب کمیته فنی مجاز خواهد بود.

پ- مسئول فنی تجهیزات پزشکی : به شخص شاغل در واحد تولیدی، وارداتی، توزیعی و یا عرضه کننده تجهیزات و ملزومات پزشکی، موسسات و صاحبان حرف پزشکی اطلاق می‏گردد که پس از معرفی توسط بالاترین مقام آن واحد و تایید کمیته فنی تجهیزات و ملزومات پزشکی نسبت به نظارت علمی و فنی به منظور اجرای مطلوب قوانین و مقررات به ویژه در انجام فرآیندهای تولید، واردات ، ترخیص، صادرات، توزیع، عرضه و خدمات پس از فروش در واحد با توجه به دستورالعمل‏های ابلاغی اقدام خواهد نمود.

ت- مؤسسه پزشکی : کلیه مراکز درمانی و واحدهای پزشکی، درمانی و دارویی مصّرح در ماده یک قانون مربوط به مقررات امور پزشکی و دارویی و مواد خوردنی و آشامیدنی مصّوب ۱۳۳۴و اصلاحیه‏ ها و الحاقیه‏ های بعدی.

ث- صاحبان حرف پزشکی : کلیه اعضای سازمان نظام پزشکی جمهوری اسلامی ایران که اجازه فعالیت در محل مطب با توجه به قوانین و مقررات جاری دارند.

ج- دستورالعمل تجهیزات پزشکی: عبارت است از مجموعه مقرراتی که به صورت جداگانه در خصوص اقدامات، الزامات و فرآیندهای مختلف از جمله تولید، واردات، ترخیص، صادرات ، حمل و نقل و انبارش، توزیع، عرضه، نصب، راه اندازی ، خدمات پس از فروش ، قیمت گذاری، امحاء، نگهداشت و مواد اولیه تولید متعاقب تصویب این آیین نامه و بر اساس ماده ۲ابلاغ خواهد شد.

چ تجهیزات ، ملزومات و وسایل پزشکی : ملزومات، تجهیزات و دستگاه‏های پزشکی، دندانپزشکی و آزمایشگاهی که به طور عام “تجهیزات و ملزومات پزشکی” نامیده می‏شوند، شامل هر گونه کالا، وسایل، ابزار، لوازم، ماشین‏آلات، کاشتنی‏ها، مواد، معرف ها و کالیبراتورهای آزمایشگاهی و نرم‏ افزارها می‏ باشند که توسط تولیدکننده برای انسان به تنهایی یا به صورت تلفیقی با سایر اقلام مرتبط به منظور دسترسی به یکی از اهداف ذیل عرضه می‏ گردند:

تشخیص، پایش، پیشگیری، درمان و یا کاهش بیماری.

حمایت یا پشتیبانی از ادامه فرآیند حیات.

کنترل و جلوگیری از بارداری.

ایجاد فرآیند سترون کردن یا ضدعفونی و تمیزکردن وسایل، محیط و پسماندهای پزشکی جهت انجام مطلوب اقدامات پزشکی، درمانی و بهداشتی.

فراهم نمودن اطلاعات جهت نیل به اهداف پزشکی به کمک روش های آزمایشگاهی بر روی نمونه های اخذ شده انسانی.

تشخیص، پایش، درمان، تسکین، جبران و یا به تعویق انداختن آسیب یا معلولیت.

تحقیق، بررسی، جایگزینی یا اصلاح فرآیندهای فیزیولوژیک یا آناتومیک.

آیین نامه تجهیزات پزشکی بخش اول

تبصره ۱:این تعریف شامل موادی که تاثیر اصلی یا هدف طراحی آنها بر بدن انسان بر پایه روشهای دارویی، ایمنی شناسی و یا متابولیکی و مواد ضد عفونی کننده و تمیز کننده است نخواهد بود .

تبصره ۲:کالاها ، مواد ، معرفها ، کالیبراتورها ، وسایل جمع آوری و نگهداری نمونه ، مواد و محلولهای کنترل آزمایشگاهی و دندانپزشکی که تعریف قانونی دارو بر آنها مرتب نگردد شامل تجهیزات و ملزومات پزشکی می باشند.

ح تولیدکننده داخلی تجهیزات پزشکی : به هر شخص حقوقی که با اخذ مجوزهای لازم نسبت به تولید تجهیزات و ملزومات پزشکی در داخل کشور با هدف عرضه با رعایت مفاد این آیین نامه تحت نام و مسئولیت خود اقدام نماید.

خ- وارد کننده تجهیزات پزشکی : کلیه اشخاص حقوقی که طبق قوانین و مقررات جاری کشور با رعایت مواد این آیین نامه نسبت به واردات تجهیزات و ملزومات پزشکی اقدام نمایند.

د- صادر کننده تجهیزات پزشکی : کلیه اشخاص حقیقی یا حقوقی فعال در عرصه تجهیزات وملزومات پزشکی در داخل کشور یا نمایندگی قانونی آنها که با رعایت قوانین و مقررات جاری نسبت به صادرات تجهیزات وملزومات پزشکی اقدام می نمایند.

ذ خدمات پس از فروش تجهیزات و ملزومات پزشکی : مجموعه اقدامات و تعهداتی که توسط تولید کننده، واردکننده یا نماینده قانونی آنها و اشخاص حقوقی مجاز به منظور عملکرد مطلوب و با رعایت اصول ایمنی در مدت مورد تعهد اعمال می گردد. اقدامات مورد نظر شامل تحویل تجهیزات و ملزومات پزشکی بر اساس قرارداد منعقده، نصب، راه اندازی، انجام آزمونهای پذیرش، آموزش، ضمانت شامل گارانتی و وارانتی، تامین قطعات، تعمیرات جزیی و کلی،کنترل کیفی انجام آزمونهای ایمنی، عملکرد و کالیبراسیون، ارتقاء و روز آمدی، ردیابی محصول، رسیدگی به درخواست مشتری، انجام اقدامات اصلاحی و فراخوانی محصول می باشد.

ر- قانون تشکیل : قانون تشکیل وزارت بهداشت، درمان و آ‌موزش پزشکی مصّوب ۱۳۶۴مجلس شورای اسلامی.

ز- قانون تشکیلات : قانون تشکیلات و وظایف وزارت بهداشت، درمان و آموزش پزشکی مصّوب ۱۳۶۷مجلس شورای اسلامی.

ژ- قانون مربوط به امور پزشکی : قانون مربوط به مقررات امور پزشکی و دارویی و مواد خوردنی و آشامیدنی مصّوب ۱۳۳۴و اصلاحیه‏ ها و الحاقیه‏ های بعدی.

س- وزارت: وزارت بهداشت، درمان و آموزش پزشکی.

ش- سازمان: سازمان غذا و داروی وزارت بهداشت، درمان و آموزش پزشکی.

ص- اداره کل : اداره کل نظارت و ارزیابی تجهیزات و ملزومات پزشکی سازمان.

ض- دانشگاه : دانشگاه /دانشکده های علوم پزشکی و خدمات بهداشتی درمانی سراسر کشور.

آیین نامه تجهیزات پزشکی 1

ماده ۲ : به منظور نیل به اهداف مندرج در آیین‏ نامه تجهیزات پزشکی برای ساماندهی و نظارت بر فعالیت در عرصه تجهیزات و ملزومات پزشکی، سازمان و اداره کل با ابلاغ دستورالعمل‏های مربوط از جمله دستورالعمل‏های ناظر بر فرآیندهای تولید،‌ واردات، ترخیص، صادرات، حمل و نقل و انبارش، توزیع، عرضه، خرید ، نصب، راه اندازی و خدمات پس از فروش تجهیزات پزشکی اقدام می‏نمایند. اجرای دستورالعمل‏های ابلاغی توسط کلیه اشخاص حقیقی یا حقوقی فعال در عرصه تجهیزات پزشکی و مؤسسات پزشکی و مراکز تابعه موضوع ماده ۸قانون تشکیل، ماده ۱۲آیین نامه اجرایی آن و صاحبان حرف پزشکی الزامی است.

ماده ۳ : مدیران عامل ، مسئولین فنی، دارندگان کارت بازرگانی و پروانه کسب واحدهای صنفی فعال در عرصه تجهیزات و ملزومات پزشکی ضمن رعایت قوانین و مقررات جاری کشور در خصوص فعالیت مؤظفند نسبت به ارائه مدارک لازم حسب مورد در خصوص ثبت شرکت ، مجوز نمایندگی از شرکت های داخلی و خارجی، اساسنامه، پروانه کسب و هرگونه مدارک و مستندات قانونی لازم باتوجه به دستورالعمل‏های ابلاغی به سازمان یا اداره کل اقدام نمایند.

ماده ۴ : به استناد اختیارات و وظایف مقرر در ماده ۲۴قانون تنظیم بخشی از مقررات مالی دولت و آیین نامه اجرایی آن، اداره کل موظف است به منظور تنظیم، تنسیق و انجام وظایف و امور محوله مربوط به صدور مجوز و پروانه ساخت و ورود تجهیزات و ملزومات پزشکی و مسئولیت فنی آنها نسبت به انجام موارد ذیل اقدام نماید:

۱تشکیل شناسنامه برای کلیه اشخاص حقوقی متقاضی فعالیت در عرصه تجهیزات و ملزومات پزشکی.

۲صدور پروانه ثبت تجهیزات و ملزومات پزشکی به منظور ساخت، ورود وترخیص تجهیزات و ملزومات پزشکی.

۳صدور ” پروانه فعالیت” برای کلیه اشخاص حقوقی متقاضی فعالیت در عرصه تجهیزات و ملزومات پزشکی.

۴تمدید ” پروانه فعالیت ” برای کلیه اشخاص حقوقی به منظوراستمرار و تداوم فعالیت در عرصه تجهیزات و ملزومات پزشکی.

ماده ۵ : فرآیند اجرایی ثبت تجهیزات و ملزومات پزشکی، تشکیل شناسنامه و صدور پروانه فعالیت به صورت تفصیلی به موجب دستورالعمل‏های ابلاغی اعلام میگردد.

ماده ۶ : ثبت تجهیزات و ملزومات پزشکی و صدور، تمدید، اصلاح و تعلیق پروانه فعالیت منوط به موافقت کمیته فنی تجهیزات و ملزومات پزشکی میباشد.

ماده ۷ : حدود وظایف و اختیارات اشخاص حقوقی و موارد مجاز به درج در پروانه فعالیت و مدت اعتبار آن به پیشنهاد اداره کل توسط کمیته فنی تجهیزات و ملزومات پزشکی تایید میگردد.

ماده ۸ : به منظور تصمیم ‏سازی، بررسی موارد خاص و ارائه پیشنهاد و راهکار در خصوص تولید، واردات، ترخیص، صادرات، حمل و نقل و انبارش، توزیع، عرضه، خرید، نصب، راه‏ اندازی و خدمات پس از فروش تجهیزات پزشکی و همچنین بررسی شرایط و صلاحیت مسئولین فنی به منظور فعالیت در واحدهای تولیدی، وارداتی، توزیعی، درمانی و خدماتی تجهیزات پزشکی و کلیه وظایف و اختیاراتی که به موجب مفاد این آیین ‏نامه مقرر گردیده است، کمیته‏ ای با عنوان ” کمیته فنی تجهیزات و ملزومات پزشکی ” که به اختصار “کمیته فنی” نامیده می‏شود،با ترکیب اعضاء و شرح وظایف زیر در اداره کل تشکیل خواهد شد:

۱رئیس سازمان به عنوان رئیس کمیته

۲معاون درمان وزارت

۳مدیر کل نظارت و ارزیابی تجهیزات و ملزومات پزشکی سازمان به عنوان عضو و دبیر کمیته

۴رئیس هیئت امنای صرفه جویی ارزی در معالجه بیماران.

۵سه نفر اعضای هیئت علمی دانشگاه‏ها یا دانشکده ‏های علوم پزشکی و خدمات بهداشتی درمانی به پیشنهاد رییس سازمان و ابلاغ وزیر

۶دو نفر از حوزه صنعت تولید، توزیع و واردات تجهیزات و ملزومات پزشکی به پیشنهاد رییس سازمان و ابلاغ وزیر

ماده ۹ : جلسات کمیته فنی به صورت منظم و با هماهنگی اداره کل و با حضور دو سوم اعضاء تشکیل و تصمیمات کمیته با رای اکثریت مطلق حاضرین معتبر است.

ماده ۱۰ : اداره کل تجهیزات پزشکی مجاز خواهد بود علاوه بر اعضای ثابت، با توجه به ارتباط موضوع طرح شده در هر جلسه کمیته فنی نسبت به دعوت از یک نفر متخصّصین فعال در عرصه تجهیزات و ملزومات پزشکی از انجمن های تخصّصی مربوطه و دو نفر کارشناس آشنا به موضوع طرح شده بدون داشتن حق رأی اقدام نماید.

ماده ۱۱ : با تصویب کمیته فنی، تشکیل کارگروه‏های تخصصی و مشورتی بلامانع است.

ماده ۱۲ : اداره کل موظف است نسبت به ارجاع موارد ذیل به منظور بررسی و اتخاذ تصمیم توسط کمیته فنی اقدام نماید:

۱دستورالعمل‏های لازم در محدوده اجرایی آیین نامه تجهیزات پزشکی.

۲احراز شرایط یا تعلیق صلاحیت مسئولین فنی تجهیزات و ملزومات پزشکی

۳موارد خاص در خصوص تامین، ساخت، تولید، واردات، ترخیص، خدمات پس از فروش ، توزیع، عرضه ، بررسی و اتخاذ تصمیم در تخلفات رخداده

۴سایراقدامات در مفاد مقرر در این آئین نامه پس از انجام کارشناسی لازم جهت تصویب اعضاء.

 آیین نامه تجهیزات پزشکی بخش دوم

آیین نامه تجهیزات پزشکی بخش دوم

ایمنی و عملکرد تجهیزات پزشکی

ماده ۱۳ :كليه اشخاص حقیقی یا حقوقی فعال در عرصه تجهيزات و ملزومات پزشكی مكّلف به احراز و اثبات انطباق وسيله پزشكی توليدی، وارداتی و عرضه شده با الزامات اساسی «اصول ایمنی و عملکرد تجهیزات پزشکی» می‏ باشند.

ماده ۱۴ :اشخاص حقیقی یا حقوقی مكلّفند جهت اثبات ايمني و عملكرد تجهیزات پزشكی نسبت به ارائه مدارك و مستندات مربوطه به اداره كل تجهیزات پزشکی با توجه به دستورالعمل‏های ابلاغی اقدام نمايند.

ماده ۱۵ :كليه اشخاص حقيقی يا حقوقی موظفند با رعايت دستورالعمل‏های طبقه‏ بندی تجهيزات وملزومات پزشكی و اطلاع از سطح خطر وسايل پزشکی مربوطه طبق دستورالعمل‏های ابلاغی نسبت به فعاليت در عرصه توليد، واردات، ترخيص، صادرات، حمل و نقل و انبارش، توزيع، عرضه، خريد ، نصب، راه اندازی و خدمات پس از فروش تجهيزات و ملزومات پزشكی اقدام نمايند.

ماده ۱۶ :منافع استفاده از تجهیزات و ملزومات پزشكی مي بايست در مقابل هزينه و اثرات جانبی نامطلوب حاصل از عملكرد تجهیزات و ملزومات به مراتب بيشتر باشد.

ماده ۱۷ :کلیه اشخاص حقیقی و حقوقی به منظور ورود فناوری های نوین (Emerging Technologies)مکلف هستند گزارش ارزیابی فناوری های سلامت را به کارگروه ارزیابی فناوری سلامت ارائه نمایند. کارگروه ارزیابی فناوری سلامت در مطابق ماده ۱۱این آیین نامه با مشارکت نمایندگان معاونت درمان و سازمان تشکیل می گردد.

ماده ۱۸ :توليد كننده یا واردكننده تجهیزات پزشکی يا نماينده قانوني آنها مكلّف به انجام آموزش نحوه استفاده از تجهیزات و ملزومات پزشكي وشرايط نگهداری و ايمني آن به كاربران طبق دستورالعمل‏های مربوط مي باشند.

ماده ۱۹ :مؤسسات پزشكی مكلّفند نسبت به بكارگيری پرسنل مجرب و آموزش ديده جهت استفاده از تجهيزات و ملزومات پزشكی با رعايت ايمنی كاربر، بيمار و محيط در تمام زمان عمر مفيد آن با هماهنگي توليدكننده یا واردكننده يا نماينده قانونی آنها اقدام نمايند.

ایمنی و عملکرد تجهیزات پزشکی

ماده ۲۰ :كاربر مستقيم و صلاحتيدار تجهیزات و ملزومات پزشكی اعم از پزشك، پرستار و يا ديگر اعضای‌ گروههای پزشكی كه طبق ماده ۱۸آموزش های لازم به منظور كاربری تجهیزات و ملزومات را دريافت نموده است؛ مي‏بايست در صورت مشاهده نقص و ايراد در عملكرد و شرايط ايمني وسيله نسبت به گزارش موضوع به مقام مسئول، مدير يا كارشناس تجهيزات پزشكی موسسه پزشكي اقدام نمايد.

ماده ۲۱ :تجهيزات و ملزومات پزشكي علاوه بر دارا بودن كليه شرايط عملكرد اعلام شده توسط توليد كننده در زمان طراحي ، توليد و بسته بندي مي بايست به گونه ای طراحی و توليد گردند كه ايمنی بيمار، كاربر و اشخاص مرتبط با خطر روبرو نگردد.

ماده ۲۲ :رعايت اصول علمی وفنّی در حمل و نقل و انبارش تجهيزات وملزومات پزشكی با توجه به اطلاعات اعلام شده توسط توليد كننده/ واردكننده يا نماينده قانونی آنها به منظور حفظ عملكرد و شرايط ايمنی تجهیزات و ملزومات الزامی است.

ماده ۲۳ :با توجه به اهميت اطلاع رساني در خصوص عملكرد يا شرايط ايمنی و ماهيت تجهیزات و ملزومات پزشكی كليه اشخاص حقیقی یا حقوقی مكلّفند نسبت به انجام فرآيند برچسب گذاری(Labeling) برای تجهیزات و ملزومات پزشكی با توجه به دستورالعمل‏های ابلاغی اقدام نمايند.كليه مدارك همراه و برچسب تجهيزات وملزومات پزشكی كه كاربرد غير حرفه ای و مصرف خانگی (Home Use) دارند مي بايست به زبان فارسی تدوين و چاپ و به نحو مقتضی در اختيار كاربر قرار گيرد.

ماده ۲۴ : مسئوليت عملكرد و ايمنی تجهيزات وملزومات پزشكی عرضه شده به عهده توليدكننده/ واردكننده و نماينده قانونی آنها می باشد.

ماده ۲۵ :در صورت احراز عدم انطباق عملكرد و ايمني تجهیزات و ملزومات پزشكی با ادّعای توليدكننده كه منجر به خسارات جانی، مالی و محيطی گردد؛ توليدكننده / واردكننده يا نماينده قانونی آنها مسئول جبران خسارات وارده مي‏ باشد.

فصل سوم-آیین نامه تجهیزات پزشکی

آیین نامه تجهیزات پزشکی بخش سوم

تولیدکنندگان تجهیزات پزشکی

ماده ۲۶ :توليد تجهيزات و ملزومات پزشكی عبارت است از استفاده از فرآيندهايی شامل تحقيق، طراحی، شكل دهی، تغيير، تبديل و فرآوری بر روی مواد اوّليه، قطعه، سخت افزار، نرم افزار با رعايت الزامات و بر اساس اصول ایمنی و عملکرد مربوطه و با توجه به دستورالعمل‏های ابلاغي كه منتهی به پديد آوری و ارائه نوعی از تجهیزات وملزومات پزشكی به عنوان محصول نهايی می شود.

ماده ۲۷ :روشهای توليد تجهيزات پزشكی,تجهیزات دندانپزشکی,تجهیزات آزمایشگاهی و.. شامل موارد ذيل مي باشد:

۱مستقل: در این روش طراحی تجهيزات و ملزومات پزشکی و اجزا یا فرآیند اصلی آن حسب مورد به صورت کامل توسط تولید کننده انجام شده و امکان ارتقاء و تولید مدل های جدید تر بصورت مستقل برای وی وجود داشته و بخشی از قطعات و یا همه اجزاء و قطعات تولید توسط تولیدکننده در محل تولید و یا به سفارش وی توسط قطعه‏ ساز داخلی و یا در صورت عدم وجود فناوری داخلی سایر قطعه سازان ساخته می‌شود.

مدیریت بر کلیه فرآیندهای مربوط به ساخت محصول نهایی مطابق ماده”۲۶بر عهده تولیدکننده می‌باشد. تشخیص میزان درصد ساخت تجهيزات و ملزومات و تسلط تولید کننده بر طراحی بر عهده اداره کل تجهیزات پزشکی میباشد.

۲مونتاژ: عبارت است از تهيه يا واردات اجزاء و قطعات و سوار كردن اين قطعات به منظور ساخت محصول نهايی و انجام فرآیندهای کنترل کیفی و کالیبراسیون.

۳بسته بندی، برچسب گذاری و یا سترون سازی: عبارت است ازاقداماتی كه شخص حقوقی، منحصرا فرآيند بسته بندی ،يا تميزكاری ،برچسب گذاری و یا سترون سازی تجهیزات پزشکی را انجام و محصول را با مسئولیت و نام تجاری خود وارد بازار نماید.

۴برچسب گذاری اختصاصی Own Brand labeling : عبارت است از اقدامی که شخص حقوقی، محصول نهايی شركت تولید کننده داخلی را با نام تجاری خود در بازار عرضه كند.

تولید کنندگان تجهیزات پزشکی آیین نامه تجهیزات پزشکی بخش سوم

ماده ۲۸ :برای هریک از روشهای فوق، پروانه یا مجوز مستقل و مربوط به آن روش صادر خواهد شد.

ماده ۲۹ :اطلاق عنوان «ساخت ایران» به تجهيزات و ملزومات پزشکی و صدور گواهی مربوطه بر اساس دستورالعمل‏های ابلاغی و درصد ساخت داخل خواهد بود.

ماده ۳۰ :صدور پروانه ثبت براساس درصد توليد تجهيزات و ملزومات پزشكی در روش توليد مستقل طبق ضابطه ساخت ایران، منحصر به تشریفات مقرر در بند ۱ماده ۲۷می باشد.

ماده ۳۱ :سیاستهای حمایتی تولید داخل نظیر الزام مراکز دولتی به تامین تجهيزات و ملزومات پزشکی تولید داخل، محدودیت ورود تجهيزات و ملزومات پزشکی مشابه خارجی، و موارد مشابه متناسب با تعیین درصد ساخت تجهيزات و ملزومات پزشکی در داخل کشور بر اساس دستورالعمل‏های ابلاغی خواهد بود.

ماده ۳۲ :توليد تجهيزات و ملزومات پزشكي به منظور توزيع، عرضه و صادرات منوط به ثبت تجهيزات و ملزومات پزشکی در اداره كل مي باشد.

ماده ۳۳ :در صورت درخواست متقاضی مبنی بر ساخت تجهيزات و ملزومات پزشكی به صورت “نمونه آزمايشی” مشروط بر احراز انطباق تجهيزات و ملزومات با اصول ايمني و عملكرد مجوز نمونه آزمايشی صادرخواهد شد. در هر صورت تجهيزات و ملزومات پزشكي واجد مجوز نمونه آزمايشی مجاز به توزیع، عرضه، و صادرات نمی باشد.

ماده ۳۴ :تهيه و استفاده مواد اوليّه در خط توليد از منابع داخلی يا خارجی منوط به ارائه مدارك و مستندات لازم با توجه به دستورالعمل‏های ابلاغی و تاييد اداره كل تجهیزات پزشکی کشور می باشد.

ماده ۳۵ :ارائه آمار توليد تجهيزات و ملزومات پزشكی توسط توليدكننده به صورت دوره های سه ماهه به اداره كل الزامي است.

ماده ۳۶ : براي برخی تجهیزات و ملزومات پزشكی از قبیل اقلام با سطح خطر بالا ، کیتهای تشخیص طبی و کاشتنی ها، ، مجوز تولید، توزیع و عرضه تجهیزات و ملزومات توسط توليدكننده به صورت آزاد سازی هر سری ساخت (Batch Release) از طرف اداره كل صورت مي گيرد.

ماده ۳۷ :توليدكننده پس از اخذ پروانه مكلف است هر گونه تغيير در مراحل فرآيند توليد را با ارائه مدارك و مستندات لازم به اطلاع اداره كل برساند. در صورت اثبات عدم انطباق شرايط زمان توليد محصول نهايی با وضعيت اعلام شده در زمان اخذ پروانه علاوه بر موارد ذیل اقدام مقتضی با توجه به تبصره ۲ماده ۳قانون مربوط به امور پزشكی جهت پیگیری موضوع توسط اداره كل معمول خواهدشد.

ماده ۳۸ :در صورتیکه عدم انطباق تجهيزات و ملزومات پزشکی با نمونه اولیه اظهار شده در حدی باشد که نحوه تولید کالا و یا ایمنی و عملکرد تجهيزات پزشکی را تغییر دهد مثلا از تولید مستقل به مونتاژ تبدیل نماید و یا درصد ساخت و یا منابع مواد و قطعات ساخت تغییر نماید، بر اساس نوع کالا و تخلف و بر اساس تشخیص کمیته فنی طبق مفاد قانون تشكيل، تشكيلات و مربوط به امور پزشكی پروانه تولید به صورت موقت یا دائم تعلیق و صلاحیت مسئول فنی برای تصدی پست مسئول فنی لغو و متخلف به مراجع قضایی معرفی می ‏شود.

ماده ۳۹ :جبران خسارات ناشی از فروش تجهیزات و ملزومات پزشکی مغایر با نمونه اولیه در چارچوب قوانین مربوطه به عهده شرکت می باشد.

ماده ۴۰ :توليدكننده می بايست به منظور فعاليت در زمينه توليد تجهيزات و ملزومات پزشكي نسبت به معرفی مسئول فنی اقدام نمايد

آیین نامه تجهیزات پزشکی بخش سوم تولید کنندگان.

ماده ۴۱ :مسئول فنی واحد توليدی تجهيزات وملزومات پزشكي علاوه بر دارا بودن شرايط عمومي مقرر در قوانين و مقررات جاری كشور می بايست دارای مدرك حداقل كارشناسی مهندسی پزشکی یا رشته های مرتبط با حوزه فعاليت با تشخيص اداره کل و تاييد کمیته فنی و با توجه به دستورالعمل‏های ابلاغي باشد.معرفی مسئول فنی توسط بالاترين مقام واحد توليدی صورت خواهد پذيرفت.

ماده ۴۲ :وظايف مسئول فنی تولید کننده، بر اساس دستورالعمل‏های ابلاغی خواهد بود. در صورت تخطّی مسئول فنی از وظايف محوله، موضوع در كميته فنی جهت پیگیری و بررسی وضعيت ادامه فعاليت وی مطرح خواهد شد.

ماده ۴۳ :مسئولیت صحت و انطباق کلیه اسناد و مدارک ارائه شده به اداره کل با دستورالعمل‏های ابلاغی بر عهده مسئول فنی می باشد.

ماده ۴۴ :توليد كننده مكلف است مطابق دستورالعمل ابلاغی، نسبت به ارائه مستندات و تمدید پروانه ثبت تجهيزات و ملزومات پزشکی ظرف مهلت مقرر به مرجع ذکر شده در دستورالعمل اقدام نماید. در صورت عدم اقدام تولید کننده به منظور تمدید مجوزهای مربوطه، تولید و عرضه تجهيزات و ملزومات پزشکی از زمان انقضای پروانه ساخت آن وسیله ممنوع می‏ باشد و با متخلف مطابق تبصره ۲ماده ۳قانون مقررات امور پزشکی برخورد خواهد شد.

ماده ۴۵ :توليد كننده علاوه بر رعايت كليه دستورالعمل‏های ابلاغی در خصوص برچسب گذاری (Labeling) موظف است نسبت به درج شماره پروانه بر روی بسته بندی تجهيزات و ملزومات پزشكي توليد شده اقدام نمايد.

ماده ۴۶ :کلیه تولید کنندگان به منظور ارتقاء کیفیت خدمات و رعایت ایمنی مصرف کننده و تداوم عملکرد تجهيزات و ملزومات پزشکی ، موظف به رعایت دستورالعمل‏های خدمات پس از فروش و توزیع محصول نهایی می باشند.

آیین نامه تجهیزات پزشکی فصل هفتم

آیین نامه تجهیزات پزشکی بخش هفتم

قیمت گذاری تجهیزات پزشکی، توزيع و نظارت

ماده ۸۶ :به منظور رعايت كليه شرايط و اصول علمی و فنی ضامن ايمنی و عملكرد تجهيزات پزشكی و جهت جلوگيری از عرضه تجهيزات و ملزومات پزشكی غير مجاز و غير قانونی؛ كليه تجهيزات و ملزومات پزشكی توليدی يا وارداتی مي بايست با رعايت دستورالعمل‏های ابلاغی، توزيع و عرضه گردند.

ماده ۸۷ :عرضه تجهيزات پزشكی به دو شكل فروش به مصرف كننده و يا مصرف در مؤسسه پزشكی برای بيمار می باشد كليه اشخاص حقيقی يا حقوقی و مؤسسات پزشكی و صاحبان مشاغل پزشكی مكلّف به رعايت “ضوابط نحوه توزيع و عرضه تجهيزات پزشكیمی باشند.

ماده ۸۸ :با توجه به ماهیت تجهیزات و ملزومات پزشکی، فهرست تجهیزاتی را که می بایست منحصرا به موسسات پزشکی، مراکز بهداشتی درمانی یا مطب صاحبان حرف جهت مصرف بیمار عرضه گردد، توسط اداره کل اعلام خواهد شد.

ماده ۸۹ :به منظور پایش شبکه، حسب مورد اداره کل نسبت به صدور مجوز توزیع تجهیزات و ملزومات پزشکی واجد پروانه ساخت معتبر و یا مجوز ورود و ترخیص اقدام می نماید.

ماده ۹۰ :كليه اشخاص حقيقی يا حقوقی و مؤسسات پزشكی مكلّف به رعايت اصول علمی و فنی حمل و نقل، انبارش و نگهداشت تجهيزات و ملزومات پزشكی با توجه به دستورالعمل‏های ابلاغی مي‏باشند.

ماده ۹۱ :در اجرای قانون تشكيل و قانون تشكيلات وزارت، كليه اشخاص حقيقی يا حقوقی فعال در عرصه توليد، واردات، ترخيص، حمل ونقل، انبارش، نگهداشت ، صادرات، توزيع، عرضه و خدمات پس از فروش تجهيزات و ملزومات پزشكی مكلّف به همكاری كامل و ارائه مستندات درخواستی از جمله توزیع و عرضه به سازمان، اداره کل و دانشگاه یا کارشناسان/ بازرسان اعزامی به منظور اعمال نظارتهای قانونی و انجام بازديدهای لازم می باشند.

ماده ۹۲ :مؤسسات پزشكی موضوع ماده يك قانون امور پزشكی و ماده ۸ قانون تشكيل و صاحبان حرف پزشكی و موارد مصرح در ماده ۷۵ این آیین نامه مكلّف به همكاری لازم در اين خصوص ميی باشند.

ماده ۹۳ :دانشگاه مكلّف است در اجرای مفاد اين آيين ‏نامه نسبت به اجرای وظایف و مسئولیت‏های واگذار شده از جمله بازديد و بازرسی از موسسات پزشكی و اشخاص حقيقی يا حقوقی فعال در عرصه تجهيزات و ملزومات پزشكی و نظارت بر شبکه توزیع و اعلام نتایج به اداره کل با توجه به دستورالعمل‏های ابلاغی اقدام نمايد.

ماده ۹۴ :نحوه تامین، مدیریت نگهداشت و مصرف و کاربری تجهيزات و ملزومات پزشكی به صورت مستمر می ‏بايست مورد بازديد قرار گرفته و كليه مشكلات موجود به ويژه وضعيت خدمات پس از فروش ارائه شده در مؤسسه پزشكی به بالاترين مقام مؤسسه پزشكی يا مركز درمانی جهت اقدام لازم منعكس گردد.

ماده ۹۵ :تنظيم گزارش‏های بازديد و بازرسی به صورت مشروح و مستدل به همراه اخذ مستندات و مدارك لازم توسط كارشناسان اعزامی دانشگاه الزامی است.

ماده ۹۶ :به منظور مصرف و کاربری بهينه تجهيزات و ملزومات پزشكی؛ دانشگاه مكلّف است نسبت به رعایت دستورالعمل‏های خريد تجهيزات و ملزومات پزشكی اقدام نمايد.

ماده ۹۷ :كليه مؤسسات پزشكی به منظور جلوگيری از انباشت تجهيزات و ملزومات پزشكی غير قابل استفاده نسبت به عدم كاربرد ، اسقاط ، انهدام، امحاء و بی خطرسازی اين اقلام با توجه به دستورالعمل‏های ابلاغی اقدام خواهند نمود. بدیهی است هرگونه استفاده مجدد کاربری و بالینی از تجهیزات فوق ممنوع می‏ باشد.

ماده ۹۸ :اشخاص حقيقی يا حقوقی و كليه مؤسسات پزشكی مكلّفند قبل از امحاء و اسقاط تجهيزات و ملزومات پزشكی غير قابل استفاده موضوع را جهت اقدام مقتضی مطابق دستورالعمل‏های ابلاغی به اداره كل يا دانشگاه منعكس نمايند.

ماده ۹۹ :در زمان تغییر نمایندگی تجهیزات و ملزومات ، نحوه عملکرد توليد، واردات، ترخيص، حمل ونقل، انبارش، نگهداشت ، صادرات، توزيع، عرضه و خدمات پس از فروش شرکتهای تولید کننده یا وارد کننده مطابق دستورالعمل‏های ابلاغی میباشد.

ماده ۱۰۰ :جابجایی ، اجاره تجهیزات پزشکی و موارد مشابه توسط اشخاص حقیقی و حقوقی فعال در عرصه تجهیزات و ملزومات پزشکی، می بایست براساس دستورالعمل‏های ابلاغی اداره کل صورت پذیرد.

ماده ۱۰۱ :اداره كل يا دانشگاه درصورت احراز رخداد تخلف، عدم رعايت دستورالعمل‏ها، مقررات و عدم همکاری کامل کلیه اشخاص حقیقی و حقوقی، نسبت به پيگيري موضوع با توجه به تبصره ۲ ماده ۳قانون امورپزشكی، ضوابط نحوه توزیع و عرضه تجهیزات پزشکی و دستورالعمل برخورد با تخلف در حوزه تجهیزات و ملزومات پزشکی و در چارچوب قوانین جاری اقدام خواهد نمود. ايراد زيان جسمی و مادی با توجه به جنبه خصوصی جرم توسط شخص يا اشخاص زيانديده پيگيری خواهد شد.کلیه اشخاص حقیقی و حقوقی موظف به رعایت تعهدات قانونی در قبال اداره کل، موسسات پزشکی و صاحبان حرف پزشکی می‏ باشند؛ در غیر اینصورت با توجه به اختیار مقرر در تبصره ۲ ماده ۱۴ قانون امور پزشکی با آنها برخورد می‏ شود .

ماده ۱۰۲ :در اجرای تصویب نامه شماره ۲۳۲۰۶/ت۵۰۶۰۳ ﻫ مورخ۰۳/۰۳/۱۳۹۳ هیئت وزیران سازمان موظف به تدوین ، تنظیم و ابلاغ قیمت تجهیزات وملزومات پزشکی و اداره کل تجهیزات پزشکی موظف به نظارت بر آن می‏ باشد.

ماده ۱۰۳ :اداره کل تجهیزات پزشکی فهرست اقلامی را که می بایست واجد قیمت مصوب باشند (فهرست پایه) پس از تصویب کمیسیون قیمت‏ گذاری اعلام می نماید.

ماده ۱۰۴ :با توجه به موافقت سازمان مدیریت و برنامه‏ ریزی کشور ابلاغی طی نامه شماره ۵۳۱۰۰/۵۱۵/۵مورخ ۱۰/۰۶/۸۶ و به منظور ايجاد فضای سازنده رقابتی، تشويق اشخاص ، بهینه‏ سازی و شفافیت امور مربوط به خرید و قیمت‏ گذاری، اداره كل با توجه به دستورالعمل‏های ابلاغی نسبت به رتبه‏ بندی اشخاص حقوقی ارائه دهنده خدمات پس از فروش و كليه اشخاص حقوقی مرتبط با توليد، واردات و توزيع تجهيزات و ملزومات پزشكي اقدام می‏نماید.

ماده ۱۰۵ :اداره کل تجهیزات پزشکی می تواند به منظور ارتقای کیفیت و کشف قیمت با تصویب کمیسیون قیمت‏ گذاری، کمیته فنی تجهیزات و ملزومات پزشکی نسبت به ایجاد فضای رقابتی، صدور مجوزهای واردات موازی، فوریتی، اعلام فراخوان قیمت و ایجاد فهرست کوتاه خرید اقدام نماید.

ماده ۱۰۶ :کلیه اشخاص حقیقی و حقوقی فعال در زمینه تامین، تولید ، واردات و ترخیص، توزیع و عرضه تجهیزات پزشکی و مؤسسات پزشکی و مراکز بهداشتی درمانی و صاحبان حرف پزشکی مکلف به رعایت قیمت مصوب و ابلاغی تجهیزات و ملزومات پزشکی، دستورالعمل‏های ابلاغی و دستورالعمل استفاده از درصد سود عمده فروش وخرده فروش در این خصوص می‏ باشند.

ماده ۱۰۷ :اداره کل یا دانشگاه موظف است در صورت مشاهده تخلف نسبت به پیگیری قانونی موضوع اقدام نماید.

ماده ۱۰۸ :به منظور انجام فرآیند قیمت گذاری تجهیزات و ملزومات پزشکی کمیسیونی تحت عنوان کمیسیون قیمت گذاریبا حضور اعضای ذیل در اداره کل تشکیل می‏گردد:

1- معاون وزیر و رئیس سازمان (رییس کمیسیون)

2- مدیر کل نظارت و ارزیابی تجهیزات و ملزومات پزشکی سازمان (دبیر)

3- نماینده تام‏الاختیار دبیرخانه شورای عالی بیمه

4- نماینده تام الاختیار معاون درمان

5- نماینده تام‏ الاختیار رییس سازمان حمایت تولیدکنندگان و مصرف کنندگان

6- رییس هیات امنای صرفه جویی ارزی در معالجه بیماران

7- یک نفر از اعضای هیئت علمی واساتید اقتصاد سلامت به پیشنهاد رییس کمیسیون و ابلاغ وزیر

8- دو نفر از تشکل‏های تجهیزات و ملزومات پزشکی به پیشنهاد رییس کمیسیون و ابلاغ وزیر

ماده ۱۰۹ :در جلسات کمیسیون کارشناس مطلع به موضوع قیمت گذاری به دعوت اداره کل بدون حق رای اجازه حضور خواهد داشت.

ماده ۱۱۰ :جلسات کمیسیون با حضور اکثریت اعضاء تشکیل خواهد شد و ملاک اعتبار مصوبات تایید پنج نفر از اعضاء کمیسیون می باشد.

ماده ۱۱۱ :در صورت عدم رعایت مفاد مقرر در این آیین‏نامه و دستورالعمل‏های ابلاغی حسب مورد و شرایط، اداره کل ضمن پیگیری مقتضی، نسبت به عدم تمدید پروانه ثبت شرکتهای تولیدی، وارداتی، توزیع، عرضه و همچنین اعلام عمومی تصمیمات اتخاذ شده پس از تایید کمیته فنی اقدام می نماید.

آیین نامه تجهیزات پزشکی فصل هشتم

آیین نامه تجهیزات پزشکی بخش هشتم

ضوابط مربوط به نمایشگاه ها و نکات عمومی

ماده ۱۱۲ :برگزاری نمايشگاههای تجهيزات پزشكی با رعايت قوانين و مقررات مربوطه با اخذ موافقت قبلی اداره کل و رعایت دستورالعمل‏های ابلاغی بلامانع است.

ماده ۱۱۳ :كليه اشخاص حقيقی يا حقوقی شركت كننده در نمايشگاه‏های تجهيزات و ملزومات پزشكی مكلّف و متعّهد به رعايت دستورالعمل‏های ابلاغی اداره كل تجهیزات پزشکی کشور در این خصوص در ارائه و عرضه تجهيزات و ملزومات پزشكي واجد مجوزهای قانونی و ارائه تبليغات منطبق با عملكرد و ايمنی تجهيزات و ملزومات پزشكی و با رعايت شئونات شرعی، فرهنگی و اجتماعی كشور می باشند.

ماده ۱۱۴ :در صورت تخّلف اشخاص حقيقی يا حقوقی شركت‏ كننده در نمايشگاه یا مسئول برگزاری نمايشگاه از مراتب مفاد اين ماده موضوع توسط اداره كل براساس دستورالعمل‏های جاری و ابلاغی مورد پيگيری واقع خواهد شد.

ماده ۱۱۵ :واردات و ترخيص نمونه موقت تجهيزات و ملزومات پزشكی جهت شركت در نمايشگاه‏های تجهيزات و ملزومات پزشكی پس از اخذ مجوز از اداره کل تجهیزات پزشکی بلامانع است. فروش و عرضه اين اقلام در صورت تبديل وضعيت به ترخيص دايم با اخذ مجوز از اداره كل بلامانع می باشد.

ماده ۱۱۶:تجهيزات و ملزومات پزشكی مشمول وضعيت ترخيص موقت و نمونه، می بايست در نمايشگاه به نحو مقتضي اطلاع‏ رسانی و شناسايی شوند.

ماده ۱۱۷ :با توجه به موارد مندرج در اين آيين‏ نامه و نظر به قوانين و مقررات جاری، كليه فعاليت‏ها و اقدامات در عرصه توليد، واردات، ترخيص، صادرات، حمل و نقل، انبارش، نگهداشت، توزيع، عرضه، خدمات پس از فروش، امحاء، اسقاط، جابجایی و کاربری تجهيزات و ملزومات پزشكی توسط كليه اشخاص حقيقی يا حقوقی منوط به رعايت مفاد اين آيين‏ نامه و دستورالعمل‏های ابلاغی مربوطه مي باشد.

کلیه مؤسسات پزشكی، مسئولین فنی آنها و صاحبان حرف پزشكی در موارد مرتبط، مكلّف به رعايت مفاد اين آيين‏نامه و دستورالعمل‏های ابلاغی مربوطه می باشند، در صورت عدم رعایت موضوع از طریق مراجع قانونی انتظامی، قضایی و کمیسیون‏های موضوع ماده ۲۰قانون مربوط به امور پزشکی حسب مورد توسط اداره کل پیگیری میگردد.

ماده ۱۱۸ :کلیه مؤسسات موجود مؤظف هستند ظرف ۶ ماه از تاریخ تصویب این آیین‏نامه نسبت به تطبیق وضعیت خود با این آیین‏نامه اقدام کنند در غیر اینصورت وفق قوانین و مقررات با آنها برخورد می‏شود.
اين آيين نامه در ۱۱۸ ماده در تاریخ ۹۴/۷/۱ به تصویب رسید و از تاريخ تصويب لازم ‏الاجراء بوده و كليه آيين‏ نامه‏ ها، دستورالعمل‏ها و بخشنامه‏ های مغاير با مفاد آن لغو می‏گردد.

پزشکی هسته ای

پزشکی هسته ای

تاریخچه پزشکی هسته ای

یكی از روش های تشخیصی- درمانی ارزشمند در طب، پزشكی هسته ای می باشد. این شاخه از پزشکی، در سال ۱۸۹۵ با كشف اشعه X و در سال ۱۹۳۴ با كشف مواد رادیواكتیو آغاز گردید. اولین استفاده كلینیكی مواد رادیواكتیو، در سال ۱۹۳۷ جهت درمان لوسمی در دانشگاه كالیفرنیا در بروكلی بود. بعد از آن در سال ۱۹۴۶ با استفاده از این مواد توانستند در یك بیمار مبتلا به سرطان تیروئید از پیشرفت این بیماری جلوگیری كنند.

تا سال ۱۹۵۰ كاربرد كلینیكی مواد رادیواكتیو رواج نیافت. طی سال های بعد از آن متخصصین و فیزیكدانان به این واقعیت پی بردند كه می توان از تجمع رادیو داروها در ارگان هدف، تصاویری از آن تهیه نمود و یا به درمان بافت آسیب دیده كمك کرد. به طوری كه در اواسط دهه ۶۰، مطالعات بسیاری در زمینه طراحی تجهیزات لازم برای این هدف، آغاز گردید. در دهه ۱۹۷۰ توانستند با روش جاروب نمودن از ارگان های دیگر بدن مانند كبد و طحال، تومورهای مغزی و مجاری گوارشی تصاویری را تهیه کنند. در دهه ۱۹۸۰ از رادیو داروها جهت تشخیص بیماری های قلبی استفاده شد و هم اكنون نیز از پزشكی هسته ای با اطمینان بسیار بالایی، در درمان، تشخیص و پیگیری روند درمان بیماری ها استفاده می گردد. وقایع مهم و مؤثر بر رشد پزشكی هسته ای در ادامه آورده شده است.

۱۸۹۶ :هنری بكرل (Henri Becquerel)اشعه ساطع شده از اورانیوم را كشف كرد.

۱۸۹۷ :ماری كوری (Marie Curie) این تابش را رادیواكتیویته نامید.

۱۹۰۱ :هنری الكساندر دانلوس (Henri Alexander Danlos) و یوگن بلاچ(Eugene Bloch) ، رادیوم را در تماس با ناراحتی پوستی توبركولوز قرار دادند.

۱۹۰۳ :الكساندر گراهامبل (Alexander Graham Bell) جایگذاری منبع اورانیوم در داخل و یا نزدیكی بافت تومورال را پیشنهاد کرد.

۱۹۱۳ :فردریك پروسچر (Frederick Proescher) برای اولین بار مطالعه درمان بیماری های مختلف را توسط تزریق وریدی اورانیوم بنیان نهاد.

۱۹۲۴ :جرج هوسی (Georg Hevesy)، كریستینسن (Christiansen)و لومهولت (Lomholt)، اولین ردیاب رادیواكتیو را بر روی حیوانات آزمایش نمودند.

۱۹۳۶ :جان لارنس (John Lawrence)، اولین كاربرد كلینیكی رادیونوكلوئیدهای خاص را در درمان لوسمی بنیان نهاد.

۱۹۴۰ :راكفلر (Rockefeller) اولین سیكلوترون را جهت تولید رادیوایزوتوپ های ویژه پزشكی در دانشگاه واشنگتن اختصاص داد.

۱۹۴۶ :ساموئل سدلین (Samuel Seidlin)، لئو مارینلی (Leo Marinelli)و الینور اشری (Eleanor Oshry)، یك بیمار با سرطان تیروئید را با I-131 درمان كردند.

۱۹۴۷ :بندیكت كاسن (Benedict Cassen)یُد رادیواكتیو را جهت تشخیص و افتراق ندول های بدخیم و خوش خیم تیروئید بكار برد.

۱۹۵۱ :سازمان دارو و غذای آمریكا (FDA) استفاده از I-131 را برای بیماری های تیروئید تأیید کرد. این اولین مصوبه FDA در رابطه با رادیو ایزوتوپ ها بود.

۱۹۵۴ :دیوید كول (David Kuhl)یك سیستم ثبت فوتونی را برای اسكن رادیونوكلئیدها اختراع كرد. این پیشرفت، پزشكی هسته ای را هم جهت با رادیولوژی به سمت پیشرفت های بیشتر هدایت نمود.

۱۹۶۲ :دیوید كول (David Kuhl) بازسازی تصاویر توموگرافی نشر شده را ابداع نمود. بعدها این روش SPECT/PET نام گرفت. تعمیم این روش در رادیولوژی همان CT می باشد.

۱۹۶۳ : FDA تنظیم ملزومات و قوانین داروهای جدید مرتبط با رادیو داروها را به سازمان انرژی اتمی واگذار کرد.

۱۹۷۰ : FDA اعلام نمود كه با توجه به كاربردهای این مواد، رادیو داروها را می توان با عنوان دارو خطاب کرد.

۱۹۷۱ :سازمان پزشكی آمریكا، پزشكی هسته ای را به عنوان یكی از شاخه های طب، به رسمیت شناخت.

۱۹۷۳ :ویلیام استراس (William Strauss)، تست ورزش را به عنوان اسكن میوكارد معرفی کرد.

۱۹۷۶ :جان كیز (John Keyes)اولین دوربین SPECT را طراحی نمود و رونالد جازاك اولین هد دوربین SPECT را طراحی كرد.

۱۹۸۱ :مچ(Mach) از مواد رادیواكتیو جهت تصویربرداری از تومورها استفاده کرد.

۱۹۸۲ :استیو لارسون (Steve Larson) و جف كاراسكوایلو (Jeff Carrasquillo)بیماران سرطانی ملانومای بدخیم را تحت درمان قرار دادند.

۱۹۸۹ : FDA اولین رادیو داروی پوزیترون را جهت تصویربرداری پرفیوژن ملانوما تصویب نمود.

۱۹۹۲ : FDA اولین رادیو داروی آنتی بادی را جهت تصویربرداری از تومور تصویب كرد.

تاریخچه پزشکی هسته ای در ایران                                                

استفاده از مواد پرتوزا در پزشکی در ایران با سنجش مقدار یُد رادیواکتیو در سال ۱۳۳۹به وسیله یک شمارشگر گایگر در آزمایشگاه پیمان مرکزی دانشکده علوم پزشکی تهران آغاز گردید. در این راستا، یک کارشناس بریتانیایی به نام Malcolm Cuthbert Nokes سهم بزرگی در پیشرفت کار پزشکی هسته‌ای در ایران ایفا کرد. با یاری وی، دکتر نظام مافی

برای اولین بار در سال ۱۳۴۰ با یک پویشگر تیروئید، تحقیقاتی را به انجام رسانید و پایه‌های پزشکی هسته‌ای را در ایران بنا نهاد . در سال ۱۳۴۶، مرکز پزشکی هسته ای و تحقیقات غدد مترشحه داخلی دانشگاه تهران تاسیس شد که در واقع اولین و قدیمی ترین مرکز پزشکی هسته‌ای کشور محسوب می‌شود. امکانات این بخش در آن زمان در حد یک دستگاه دوربین انگر بود که تدریجاً مجهزتر گردید.

چشمه های رادیواکتیو برای پزشکی هسته ای

سودمندترین رادیو ایزوتوپها در پزشکی هسته ای رادیوایزوتوپهای تابش کننده گاما می باشند ،زیرا پرتوهای تابش شده از این مواد در درون بدن را می توان از بیرون بدن به سادگی تشخیص داد.اندازه های کاربردی مواد رادیواکتیو در روشهای تشخیص از دید جرم بسیار اندک است (نزدیک به میکروگرم) به گونه ای که این مواد بر روندکارهای فیزیولوژیک بدن اثری ندارند.رادیوایزوتوپها بیشتر به گونه ترکیبی ، وارد بدن می شوند. ترکیب های یاد شده مولکولهای نشاندار هستند.

یک مولکول نشاندار مولکولی است که یک یا چند اتم آن رادیواکتیو باشد.ترکیبات رادیواکتیو، داروهای رادیواکتیو یا رادیوداروها باید از استانداردهای ویژه خالص بودن شیمیایی و دارویی برخوردار باشد. بیشتر رادیوداروهای پزشکی هسته ای از شرکتهای بازرگانی دارویی که چگونگی ویژگیهای رادیوداروها را کنترل می کنند خریداری می شوند. تنها کاری که پزشک یا کاربر باید انجام دهد بکارگیری جدولی برای تعیین اندازه دگرگون شده این رادیوداروها از زمان آخرین اندازه گیری اکتیویته آنهاست.برای نشاندار کردن مولکولها شماری از رادیوایزوتوپها بکار برده می شود. این رادیوایزوتوپها بیشتر تابش کنندههای گاما و دارای ویژگیهای گوناگون فیزیکی هستند. نمونه این رادیوایزوتوپها رادیوایزوتوپهای ۵۳I , 43Tc , 79Au , 15P , 31Ga و می باشند که به راههای گوناگون تهیه می شوند. البته باید یادآوری کرد که رادیوایزوتوپهای مناسبی از عنصرهای کلیدی هیدروژن و اکسیژن و کربن وجود ندارد، ولی امروزه با به کارگیری شتابنده هایی مانند سیکلوترون در بیمارستانهای پیشرفته ،برخی از سختی های کار از میان برداشته شده است.

برای نمونه رادیوایزوتوپهایی را در جایگاه مصرف تولید می کنند که نیمه عمر چند دقیقه ای دارند .نمونه این رادیوایزوتوپها Ga , Fe , F , O می باشد. O با نیمه عمر دو دقیقه ای به سرعت جذب بدن می شود و در همین زمان کوتاه می توان بررسیهای دقیق فیزیولوژیک انجام داد. شماری از رادیوایزوتوپهای کاربردی در پزشکی از ژنراتورهایی بدست می آیند که درباره آنها بیشتر گفتگو خواهد شد. رادیوایزوتوپهای مورد استفاده در کارهای تشخیصی باید تابش کننده گاما بوده گاهی پوزیترون بکار می رود و نیمه عمر مناسب کارتشخیصی را داشته باشند.از با ارزش ترین رادیوایزوتوپها در کار تشخیص، Tc است که شمار فراوانی از ترکیب های شیمیایی کاربردی را با آن نشاندار می کنند. تکنسیم بصورت پرتکنتات سدیم ( NaTco12 ) برای نشاندار کردن بکار می رود. درتهیه این مولکولها در آغاز پرتکنتات به یون Tc کاهش داده شده و سپس آنرا با ماده شیمیایی دلخواه بصورت کمپلکس در می آورند. ماده شیمیایی آماده است و تنها باید پرتکنتات بگونه ای استریل و بدون پیروژن به آن افزوده شود

و پس از چند دقیقه ترکیب برای کاربری آماده است. راندمان این فرایند شیمیایی به ۹۰ درصد می رسد و باقیمانده ترکیب نشده به گونه ناخالصی درترکیب وجود خواهد داشت.به علت تابش شدید پرتو در ترکیب ،ترکیب های یاد شده می توانند دی ناتوره شوند از این رو ترکیب بدست آمده باید در همان روز بکار برده شود و اگر اجبار در نگهداری آنها وجود داشته باشد،

باید با افزودن نگهدارنده های مناسب در دمای پایین نگهداری شوند.رادیوایزوتوپهای پرکابرد پزشکی بیشتر از ژنراتورها بدست می آیند. دو رادیوایزوتوپ بسیار پرکاربرد برای کارهای تشخیصی و درمانی رادیوایزوتوپهای Tc و I می باشند. نیمه عمر ۸ روزه I اجازه می دهد که آن را به جاهای دور دست انتقال دهند. این رادیو دارو در درمان سرطان تیروئید و همچنین کنترل پرکاری آن نقش اساسی دارد.تکنیسم با نیمه عمر ۶ ساعته اجازه می دهد که بیشتر کارهای تشخیصی به آسانی انجام پذیرد.

ژنراتورهای مواد رادیواکتیو

رادیوایزوتوپ ها چشمه های رادیواکتیو ژنراتورهای رادیواکتیو پزشکی هسته ای

در یک ژنراتور یک رادیوایزوتوپ دختر با نیمه عمر کوتاه که کاربرد پزشکی دارد از یک رادیوایزوتوپ مادر که نیمه عمر طولانی دارد به دست می آید. نمونه های این ژنراتورها چنین اند:

Tc (6 hrs)

Mo (67 hrs)

(I( 2.3 hrs

Te ( 78 hrs)

Sr (2.8 hrs)

Y ( 80 hrs)

a ( 67 min)

Ge (271 ds)

Kr ( 13 Sec)

Rb ( 4.6 hrs)

رادیو اکتیویته ها در بافت هدف تجمع می کنند بعضی از رادیو ایزوتوپ ها که بافت هدفشان چند گانه است در اسکن از کل بدن کاربرد دارند.به طور مثال رادیو ایزوتوپ TC-Dtpa در ناحیه ی کلیه و TC_ Dmsa در ناحیه ی کبد تجمع می کنند .وقتی رادیو ایزوتوپ تجویز شد به سه شکل به بیمار داده می شود:

۱درون رگ تزریق می کنند ۲ به صورت خوراکی ۳ استنشاق

رادیو نوکلید شکل شیمیایی کاربرد
99mTc پرتکنتات سدیم مغز ، تیروئید ، غدد بزاقی ، عکس برداری استخر خونی ، مکان یابی ، جفت جنین
99mTc کلوئید آلبومین جگر ، طحال ، عکسبرداری مغز استخوان
99mTc اتیدرونات EHDP عکسبرداری استخوان
99mTc پنتتات DTPA عکسبرداری مغز ، ریزش کلیوی ، عکسبرداری تنفس شش
99mTc پیروفسفات PPi عکسبرداری استخوان ، عکسبرداری آرواره
131I یدید سدیم تشخیص کار تیروئید ، عکسبرداری تیروئید
125I آلبومین تعیین حجم خون و پلاسما ، بررسیهای تیروئید
123I یدید سدیم تشخیص کار تیروئید ، عکسبرداری تیروئید
201Tl کلرید تالوس عضلات قلب ، گردش خون
133Xe گاز عکسبرداری تنفسی ، مطالعات جریان خون
67Ga سیترات گالیم عکسبرداری تومور

آشکارسازی پرتوها در پزشکی هسته ای

دو گونه جداگانه از شمارش در پزشکی هسته ای انجام می گیرد:

الف)جهت تعیین اندازه رادیواکتیویته در نمونه یا حجمی معین

اتاقک یونش

آشکار ساز کنترگایگر مولر

ب)جهت تعیین چگونگی پخش رادیواکتیویته در بدن

-دستگاه های نگاره برداری

اتاقک یونش

ساختار یک اتاقک یونیزاسیون

اتاقک یونیزاسیون را می‌توانیم به صورت یک خازن با صفحات موازی تلقی کنیم که ناحیه بین صفحات آن را گازی که معمولا هواست، پر کرده است. میدان الکتریکی در این ناحیه مانع از ترکیب مجدد یونها و الکترونها می‌شود و برای درک بهتر وضعیت درون اتاقک باید گفت در حالی که ابری از الکترونها به سوی صفحه متصل به پتانسیل مثبت رانده می‌شود، یونهای مثبت به طرف صفحه دیگر خازن سوق داده می‌شود.برای ورود دسته پرتوها به داخل اتاقک ، روی بدنه جانبی اتاقک سوراخی تعبیه شده است و برای اینکه پرتوهای ورودی بتوانند بدون برخورد به مانعی (بجز هوا) از اتاقک خارج بشوند، در مقابل همین سوراخ ، روی بدنه مقابل ، سوراخ وسیع‌تری ایجاد شده است.

طرز کار اتاقک یونیزاسیون

هنگامی که پرتوها از سوراخ اول وارد و از سوراخ دوم خارج می‌شوند، در محدوده طول مسیر خود ، حجم مشخصی از هوای درون اتاقک را یونیزه می‌کنند. الکترونها و یونهای تولید شده تحت تاثیر میدان الکتریکی هر کدام به سمت صفحات مخالف حرکت می‌کنند تا به آن برسند. با اندازه گیری مقدار بار الکتریکی که به یکی از صفحات رسیده است و با دانستن مقدار حجم هوایی که در آن یون سازی صورت گرفته،

می‌توان به کمیت پرتو پی برد. برای اندازه گیری دقیق مقدار پرتوها با این وسیله نکات مهم زیر رعایت می‌گردد: ابعاد اتاقک طوری انتخاب می‌شود که پرتوهای یونساز تمام انرژی خودشان را درون اتاقک از دست بدهند و به همین دلیل ابعاد اتاقک تابع انرژی پرتوهاست. با گذاردن مانع کافی در سر راه پرتوها ، بجز آنچه از سوراخ تعبیه شده وارد اتاقک می‌شود، از ورود بقیه پرتوها جلوگیری می‌شود.سعی می‌شود

که بین دو صفحه فلزی و بخصوص در محدوده‌ای که یونها جمع‌آوری و اندازه گیری می‌شوند، شدت میدان الکتریکی یکنواخت باشد و به همین سبب است که یکی از صفحات جاذب یونها به سه قسمت تقسیم می‌شود و فقط یونهایی که در محوطه میانی اتاقک تولید می‌شوند، جمع‌آوری و اندازه گیری می‌شوند. با دخالت دادن ضریبی که مربوط به تاثیر درجه حرارت و فشار در حجم هوای مورد تابش است، نتایج حاصل از اندازه گیریها تصحیح می‌گردد.

ساختار یک اتاقک یونیزاسیون اتاق یونش پزشکی هسته ای یونیزاسیون

سیستم های دزیمتری با اتاقک یونش

1-اتاقک ها والکترومترها

اتاقک های یونش،درپرتودرمانی وپرتوشناسی تشخیصی برای تعیین دزتابش مورداستفاده قرار می گیرند.تعیین دزدرشرایط پرتودهی مرجع،مدرج سازی باریکه نیز نامیده می شود.اتاقک های یونش بسته به نیازهای خاص به شکل ها واندازه های مختلفی عرضه می شوند،ولی همگی به طورکلی ویژگیهای زیر را دارا هستند:

یک اتاقک یونش اصولاحفره ای پر از گازاست که توسط یک دیواره خارجی فلزی احاطه شده است ودارای یک الکترود مرکزی جمع آوری کننده می باشد.دیواره والکترود جمع آوری کننده توسط یک عایق با کیفیت بالا از یکدیگرجداشده اند،تاهنگامی که یک ولتاژ قطبی کننده براتاقک اعمال می شود،نشت جریان راکاهش دهد.

معمولایک الکترودمحافظ دراتاقک تدارک دیده شده است تا نشتی اتاقک رابیشتر کاهش دهد.الکترودمحافظ باگذشتن ازکنارالکترودجمع آوری کننده باجریان نشتی تلاقی کرده، به آن اجازه میدهد تابه زمین شارش پیداکند.

2- اتاقک های یونش استوانه ای(ازنوع انگشتانه ای(

عمومی ترین اتاقک یونش استوانه ای،اتاقک۶/۰۳CM است که به منظور مدرج سازی باریکه درزیمتری پرتو درمانی توسط فارمرطراحی شده وتوسط بالدوین ساخته شده است،ولی اکنون توسط فروشندگان مختلف عرضه می شود.حجم حساس اتاقک آن شبیه انگشتانه است،واز این رواتاقک فارمر،اتاقک انگشتانه ای نیزنامیده میشود. طرح واره ای ازیک اتاقک یونش انگشتانه ای فارمر در شکل زیر نشان داده شده است.

اتاقک های یونش استوانه ای پزشکی هسته ای مهندسی پزشکی رشته مهندسی پزشکی

اتاقک های یونش استوانه ای پزشکی هسته ای مهندسی پزشکی رشته مهندسی پزشکی

3- اتاقکهای یونش باصفحه موازی

یک اتاقک یونش با صفحه موازی (موازی صفحه ای) ازدو دیواره صفحه ای تشکیل شده است که یکی بصورت پنجره ورودی والکترودقطبی کننده عمل می کند ودیگری بصورت دیواره پشتی والکترودجمع آوری کننده وهمچنین سیستم حلقه محافظ عمل می کند.

دیواره پشتی معمولا قطعه ای ازپلاستیک رسانا یا ماده ای نارسانا(معمولاپرسپکس یاپلی استیرن)با لایه ی رسانای نازکی ازجنس گرافیت برروی سطحش است که الکترود جمع آوری کننده وسیستم حلقه محافظ راشکل می دهد.

طرح واره ای ازیک اتاق یونش با صفحه موازی

اتاقکهای یونش باصفحه موازی پزشکی هسته ای مدرسه مهندسی پزشکی مهندسی پزشکی و پزشکی هسته ای

4- اتاقک های براکی تراپی

چشمه های مورداستفاده دربراکی تراپی،چشمه هایی باآهنگ گرمای هوای پائین هستنـــد که به اتاقک های باحجــم کافـــی حدود(۲۵۰cm3یابیشتر)نیاز دارندتاحساسیت مناسبی داشته باشند.اتاقکهای چاهکی یا باقابلیت ورودمجددبطورایده آلــی برای مدرج سازی واستانداردسازی چشمه های براکی تراپی مناسبند.اتاقک های براکی تراپی باید طوری طراحی شوندکه چشمه های دارای ابعادوشکلهای معمول مورداستفاده بالینی دربراکی تراپی رادرخودجای دهندومعمولابرحسب آهنگ مرجع گرمای هوامدرج می شوند.

طرح پایه ای یک اتاقک براکی تراپی

طرح پایه ای یک اتاقک براکی تراپی شکل یک اتاقک براکی تراپی پزشکی هسته ای مهندسی پزشکی

5- اتاقکهای برون یابی

اتاقکهای برون یابی،اتاقکهای باصفحه موازی ای باحجم حساس قابل تغییرهستند.ازآنها دراندازه گیردزهای سطحی درپرتوهایXو مگاولتاژودردزیمتری پرتوهای بتا وایکس کم انرژی استفاده میشود. علاوه براین،هنگامی که مستقیــمادریک فانــتوم معادل بافت قرار می گیرند،میتوان از آنهادردزیمتری مطلـــق،تابش نیزاستفاده کرد. باانجام اندازه گیــریهای بصورت تابعی ازضخامت حفـــره وسپس برون یابی تاضخامت صفر،می توان اثراغتشــاشی حفره رابرای الکترون حذف کرد.بااستفاده ازاین اتاقک می توان اغتشاش حفره رابرای اتاقکهای باصفحه موازی که دارای ضخامت محدودی اند تخمین زد.

آشکار ساز کنترگایگر مولر

آشکارسازها ابزاری هستند که برای سنجش و آشکارسازی شدت و یا طیف یونیزاسیون و یا غیر یونیزاسیون به کار می‌رود. اساس کار اکثر آشکارسازها مشابه است. متناسب با این که بخواهیم چه نوع ذره‌ای را آشکار کنیم باید از آشکارسازهای خاصی استفاده کنیم.

آشکارسازهای گازی از جمله مهم ترین و پرکاربردترین آشکارسازها محسوب می‌شوند. برای اولین بار در سال ۱۹۰۸ آشکارسازهای گازی برای آشکارسازی اشعه توسط گایگر مولر در آزمایشگاه رادرفور استفاده شد و پس از آن برای آشکارسازی و سنجش اشعه مورد استفاده قرار می‌گیرد. آشکارساز گایگر مولر (G- M) آشکارساز گایگر نیز نامیده می‌شود. این آشکارساز، شمارنده‌ای برای ذرات بنیادی و ذرات باردار هم چنین برای سنجش اشعه ایکس، گاما، ذرات آلفا و ذرات بتا نیز کاربردهای فراوان دارد. آشکارساز گایگر از جمله آشکارسازهایی است که برای سنجش میزان آلودگی رادیواکتیو نیز استفاده می‌شود.

تصویر یک آشکارساز گایگر مولر

The Geiger Muller detector آشکارساز گایگرمولر سنجش میزان آلودگی رادیواکتیو پزشکی هسته ای مهندسی پزشکی

اساس کار آشکارساز گایگر مولر

مبنای کار بدین صورت است که زمانی که یک پرتو یا ذره‌ی شتابدار در حجم گاز وارد می‌شود، یونیزه می‌شود.اگر اختلاف پتانسیلی بین دو الکترود برقرار باشد، میدان الکتریکی در گاز ایجاد شده و نیرویی از طرف میدان به یون‌ها وارد شده و یون‌های مثبت را به الکترود منفی و یون‌های منفی را به سمت الکترود مثبت هدایت می‌کند.

حرکت یون‌ها منجر به تولید جریان الکتریکی لحظه‌ای می‌شود. جریان تولید شده به وسیله‌ی یک الکترومتر با حساسیت متوسط قابل اندازه گیری است. شدت جریان تولید شده به عواملی از جمله اختلاف پتانسیل الکترودها، فاصله‌ی دو الکترود، نوع گاز، حجم گاز، فشار و دمای گاز بستگی دارد که از بین این عوامل اختلاف پتانسیل بین دو الکترود مهم ترین عامل تأثیرگذار در شدت جریان است.

اگر ولتاژی بین دو الکترود برقرار نباشد. یون‌ها در محیط گازی ترکیب شده و اتم یا مولکول خنثی ایجاد شده و جریانی حاصل نمی‌شود. هر نوع گازی را می‌توان در آشکارسازهای گایگر استفاده کرد، البته همان طور که گفته شد نوع گاز نیز در سنجش و آشکارسازی ذرات با ایجاد جریان مۆثر است. هوا و کلر از جمله گازهایی هستند که بهتر است در این آشکارسازها استفاده می‌شوند.

تصویر اجزاء درونی آشکارساز گایگر مولر

شکل اجزاء درونی آشکارساز گایگر مولر پزشکی هسته ای مهندسی پزشکی

آشکارساز گایگر مولر قادر است حتی با وجود یک زوج یون در محیط گازی جریان و پالس ایجاد کند. بنابراین اگر اشعه‌ای وارد حجم گازی آشکارساز وارد شود حتماً شمرده خواهد شد. پالس‌های تشکیل شده توسط این آشکارسازها ارتفاع بیشتری نسبت به بسیاری از انواع دیگری از آشکارسازهای دارند و هم چنین نیازی به استفاده‌ی تقویت کننده در آشکارسازهای گایگر نیست.

دستگاه های نگاره برداری در پزشکی هسته ای

در تشخیص ،آگاهی از چگونگی پخش مواد رادیواکتیو در یک عضو بسیار با ارزش است. نگاره برداری از چگونگی پخش مواد رادیواکتیو دربدن ،امروزه مهمترین کار پزشکی هسته ای است. امروزه نگاره برداری پرشکی هسته ای با بکارگیری آشکارسازهای سوسوزن(سینتیلاسیون)انجام می شود.

آشکارسازهای سنتیلاتور

بعضی از مواد ( مثلا فسفات زنگ ) وقتی در معرض اشعه رادیواکتیو قرار میگیرند از خود نور مرئی ساطع می کنند و چون این نور به صورت جرقه مشاهده میشود لذا آنها را مواد جرقه زن یا سنتیلاتور می نامند .

این پدیده از زمانهای خیلی پیش مشاهده شده بود ولی چون اندازه گیری نور مرئی جزئی که از این مواد ساطع میشود تقریبا غیرممکن بود لذا کسی به این روش اندازه گیری توجه نمی کرد . تا اینکه بعد از پیدایش لوله های فوتو مولتی پلیر توانستند این دو وسیله را با هم استفاده نمایند . اکنون ترکیب این دو وسیله عمده ترین دستگاه اندازه گیری اشعه رادیواکتیو در ازمایشگاه های طب هسته ای می باشند .

مکانیزم کار شمارنده سنتیلاتور

وقتی که تابش یونیزه کننده از داخل سنتیلاتور عبورمی کند، فوتون هائی را بوجود می آورد. فوتو مولتی پلیر دارای لایه ای با خاصیت فوتو الکتریک می باشد. وقتی نور با این لایه برخورد می کند، الکترون از آن خارج می شود. تعداد الکترون های خارج شده تابع شمار فوتون هائی است که با فوتو کاتد برخورد می کنند. الکترون های گسیل شده توسط سطح فوتو کاتد در میدان الکتریکی شتاب می گیرند و به طرف داینود رانده می شوند.

داینود صفحه ای است با رویه ای خاص که الکترون ها به آسانی از آن کنده می شوند . هر الکترونی که به داینود می رسد بسته به انرژی ای که از میدان الکتریکی کسب می کند ، حدود سه یا چهار الکترون از داینود می کند.سپس الکترون هایی که از داینود گسیل می شوند ، به طرف دومین داینود شتاب می گیرند و هر یک از الکترون ها چندین الکترون دیگر را از این داینود جدا می سازند و این فرآیند چندین بار با تعداد الکترون هایی که در هر داینود سه یا چهار برابر شده اند تکرار می شود

تکثیر کننده های فوتونی موجود ۶ تا ۱۴ مرحله ای هستند . الکترون های آخرین داینود بار کل Q توسط یک صفحه ( که آند نام دارد ) جمع می شوند و از آنجا الکترون ها به طرف خازن جریان پیدا می کنند . در نتیجه در خازن C باری برابر به بار خازن القا می شود که در خروجی ایجاد ولتاژ می کند که این به کمک مدار RC به صورت یک پالس می باشد .

مکانیزم کار شمارنده سنتیلاتور سنتیلاتور پزشکی هسته ای مهندسی پزشکی مهندسی پزشکی

مواد سنتیلاتور

بعضی از مواد می توانند انرژی جذب نموده و مقداری از آن را به صورت نور مجدد تابش نمایند ، این عمل لومینسانس نام دارد .موادی که تابش مجدد را در طول زمانی در حدود چند میکرو ثانیه یا کمتر انجام می دهند ، به مواد فلوئورسان موسوم هستند .موادی که فاصله زمانی جذب انرژی و پس دادن آن به صورت نور برایشان طولانی تر است ، فسفر سان نام دارند . در آشکارسازی تابش ها فقط مواد فلوئورسان بکار می روند . وقتی برای چنین منظوری مورد استفاده قرار می گیرند سنتیلاتور نامیده می شوند .

یکی از خواص لازم برای سنتیلاتور این است که باید به مقدار زیاد نسبت به فوتون هایی که تابش می کنند شفاف باشند . قسمتی از فوتون های که به وسیله سنتیلاتور جذب می گردد ، بستگی به نوع ماده دارد . سنتیلاتور های غیر آلی تقریبا ۱۰۰ درصد شفاف هستند . سنتیلاتور های آلی به طور کلی شفافیت کم دارند .انواع مختلف سنتیلاتور مورد استفاده قرار می گیرند . مواد غیر آلی جامد بیشتر ی دور فلزات قلیایی و مواد جامد آلی ، به مقدار زیاد هیدروکربور های معطر جانشین شده ، محلول های آلی در حلال های مایع و یا پلاستیک از مواد سنتیلاتور هستند .

Scintillation Detector پزشکی هسته ای آشکارسازسنتیلاتور مهندسی پزشکی

آشکارسازی اشعه گاما به وسیله ی شمارنده های سنتیلاسیون

اشعه گاما در نتیجه یکی از مراحل زیر در سنتیلاتور متوقف می گردد :

۱فتوالکتریک

۲پدیده کامپتون

۳پدیده تولید جفت

در مرحله اول الکترون ها به وجود می آیند و در مرحله سوم الکترون ها و پوزیترون ها ایجاد می شوند . این ذرات بار دار سنتیلاتور را تحریک کرده و فوتون ها را به وجود می آورند . بنابراین ارتفاع پالس ایجاد شده به وسیله اشعه گاما متناسب با انرژی الکترون و پوزیترون می باشد . می توان نتیجه گرفت که توزیع ارتفاع پالس ( یعنی تعداد پالس ها بر حسب ارتفاع پالس ) تابع سطح مقطع های نسبی در این مرحله است .هر نوع سنتیلاتور را می توان برای آشکار سازی ذرات باردار به کار برد . به عنوان مثال برای ذرات آلفا چون برد آنها خیلی کوچک است ، کریستال های نازک به کار می برند .

در شمارش بتا با سنتیلاتورها باید توجه خاصی به این دو فاکتور شود :

۱پراکندگی به عقب

۲توزیع انرژی اتصالی برای ذرات بتا از منابع رادیواکتیو

پراکندگی به عقب در مورد سنتیلاتورهای پلاستیک آلی خیلی کوچک است ،لذا این نوع کریستال ها برای اسپکتروسکپی الکترون مورد استفاده قرار می گیرد.

بیو فیدبک کنسرسیوم ایرکاس

بیوفیدبک چیست؟

بيوفيدبك يا پس خوران زيستي ،روش درماني است كه از اواخردهه ششم قرن بيستم ابداع شده است كه در ان بيمار در مقابل نماد يكي از تظاهرات بيولوژيك خود قرار ميگيرد و سعي ميكند با تمركز آن را در جهت مطلوب تغيير دهد. واژه ي بيوفيدبك براي اولين بار در اواخر دهه ۱۹۶۰به برخي موضوعات تحقيقاتي با هدف تغيير فعاليت هاي غير ارادي بدن ،از قبيل فعاليت هاي مغزي،فشارخون ،تعدادضربان قلب واطلاق شد.

براي مثال ميدانيم شخصي كه دچار عارضه ميگرن هست در هنگام حمله ميگرن امواج طيف الفا در مغز ندارد.براي او شكل امواج الفا توضيح داده مي شود وسپس الكترودهاي نوار مغزي روي سر او متصل مي شود ودر حالي كه امواج مغزي خود را روي صفحه مانيتور مي بيند ، با تمركز سعي ميكند كه امواج مغزي خود را به الفا تبديل نمايد .پس از چندين جلسه تمركز و كوشش ، بيمار قادر به اين كار خواهد شد و هر بار ايجاد امواج الفا براي راحت تر امكان پذير مي شود ، تا به جاي برسد كه ديگر احتياج به ديدن امواج مغزي خود ندارد و هرگاه كه دچار سر درد شد مي تواند با تمركز امواج الفا را در مغز خود ايجاد كند، كه در اين حالت سر درد رفع خواهد شد. بيوفيدبك در طيف وسيعي از بيماري ها ، مانند انواع دردها،اضطراب،صرع،اسم،افسردگي،اعتياد، فشار خون و تقريبا حدود ۱۵۰بيماري موثر است.

بيوفيدبك استفاده از تواناي ذهن براي بهبود وضعيت سلامت بدن :

اگرچه ذهن و تواناي ذهن قادر به رفع كامل علايم بيماريها نيست ولي استفاده از قدرت ذهن تا حد زيادي ميتواند اين علايم را كاهش دهد هدف بيوفيدبك تاثير بر پاسخ هاي غير ارادي بدن و كنترل انها مي باشد.

عمده فعاليت هاي غير ارادي بدن شامل موارد زير است :

_ فعاليت هاي مغز

_ فشار خون

_ اسپاسم وانقباض عضلاني

_ تعداد ضربان قلب

www.ircas.ir

در يك جلسه ي بيوفيدبك چه اتفاقي مي افتد ؟

روش هاي بيوفيدبك را ميتوان در درمانگاه ها مراكز درماني و بيمارستانها بكارد برد. بدين ترتيب كه درمانگر حسگرهاي الكتريكي را به نقاط مختلف بدن، متصل ميكند، اين حسگر ها ، پاسخ هاي فيزيولوژيك بدن به استرس هاي نظير انقباض عضلاني حين دردهاي تنشي را نشان ميدهد . انقباض ها بوسيله ابزار صوتي ياتصويري به بيمار نشان داده مي شود و فرد كاملا در جريان واكنشهاي بدن مثل انقباض دردناك قرار گرفته و متوجه ارتباط بين انقباض ها با ايجاد درد مي شود .

قدم بعدي فرا گرفتن بر انگيختن واكنش هاي مثبت در بدن مي باشد.خود بيمار در اين مرحله بايد ياد بگيرد هنگامي كه در معرض استرس هاي جسمي يا رواني قرار ميگيرد ، هر عضله از عضلات بدن را چگونه ريلكس نمايد .هدف نهاي اينست كه فرد بتواند در خارج از مركز درماني نيز بدون استفاده از ابزار و وسايل ، اين پاسخهاي مثبت را ايجاد كند.

اين وسايل بصورت يك حس ششم،براي بيماران عمل ميكنند ،زيرا به انها اجازه ميدهد كه فعاليت درون بدن خود را به نحوي ببينند يا بشنوند (فيدبك ديداري يا فيدبك شنيداري)در واقع بيمار مانند يك بازيكن فوتبال سعي دارد مهارتي بياموزد ودستگاه هاي بيوفيدبك،عملكرد وي را نشان ميدهد.مثلا افزايش انقباض در ماهيچه ها سبب پخش صداي با فركانس بالا ميشود وكاهش انقباض سبب پخش صداي با فركانس پايين

امروزه با توسعه دانش الكترونيك ، دستگاه هاي بيوفيدبك پيوسته رو به تكامل هستند . به گونه اي كه هم اكنون با استفاده از كامپيوتر هاي شخصي و مانيتور هاي رنگي ، كيفيت ارايه علايم فيدبك با استفاده از تركيب رنگها ، تصاوير و نمودارهاي مختلف بسيار افزايش يافته است.

www.ircas.ir 4

انواع بيوفيدبك :

درمانگر براي جمع اوري اطلاعات مربوط به پاسخ بدن بيمار بسته به نوع بيماري وشرايط موجود از تكنيك هاي متعددي مي تواند استفاده نمايد ، از ان جمله ابزار ها ميتوان به اين ابزارها و تكنيك ها اشاره نمود :

-الكترومايوگرام (EMG) :

دستگاهي كه براي اندازه گيري انقباض عضلاني بكار ميرود با نمايان كردن اين انقباضات به خود بيمار ، او متوجه منشا دردهاي خود شده وميتواند كنترل كند .EMG در درمان هاي درد هاي پشت ، سر درد ، درد گردن ، دندان قروچه موثر است . همچنين در تخفيف شرايط استرس زا وشرايطي مثل اسم و زخم معده موثر است .

-بيوفيدبك حرارت بدن :

حسگرهاي كه به انگشتان دستها يا پاها متصل ميگردند ، دماي بدن را ميسنجند به طور مثال معمولا دماي بدن به هنگام استرس كاهش ميابد و بنابر اين ثبت دماهاي كاهش يافته مبناي براي شروع تحريكات مثبت و ريلكس كردن عضلات خواهد بود .اين تكنيك در درمان بيماري رينود و حملات ميگرن موثر است .

-ثبت كننده هاي فعاليت گالوانيك پوست :

با ثبت فعاليت غدد عرق و ميزان تحريك پوست كه در شرايط استرس ، افزايش ميابند ميتوان به درمان بيماري هاي هيجاني نظير هراس ها ، اضطراب و لكنت زبان كمك كرد .

-الكترو انسفالوگرام(EEG) :

اين دستگاه فعاليت الكتريكي امواج مغز را در شرايط مختلف مثل بيداري ، ريلكس بودن،ارامش ، خواب سبك و خواب عميق اندازه ميگيرد.

www.ircas.ir بیو فیدبک

بيوفيدبك مغزي :

استفاده از بيوفيدبك مغزي به دهه ي ۱۹۶۰و هنگاميكه بيوفيدبك ريتم الفا مرسوم بود ، بر مي گردد.در ان زمان تصور ميشد كه با استفاده از اين نوع فيدبك ميتوان به وضعيت ذهني يا يوگا رسيد كه ريتم الفا در طول دوره ي مراقبت ديده شود ، ولي اين موضوع به حقيقت نپيوست واين روند مقبوليت خود را از دست داد . روند جديد بيوفيدبك بر اساس EEGديگر متكي به اموزش الفا و اموزش بخشي نيست.

درمان بيماري ADHD :

در بيماران ADHDفقط در زماني كه شخص مشغول كار مورد علاقه اش هست ، مغز امواج بتا را به صورت اكتيو توليد مي كند (مانند زمانيكه مشغول بازي با VIDEO GAMEاست)پس اين بيماران ميتوانند براي ساعتها تمركز كنند،اما اگر كار يا فعاليت انها دلچسب نباشد(شبيه تكاليف مدرسه!)مغز انها شروع به توليد امواج تتا به صور ت اكتيو ميكند ، بدين ترتيب انها حالت خواب الوده و ساكت پيدا ميكنند ADHDها افرادي هستند كه از روي انگيزه ي اني و بدون فكر قبلي عمل ميكنند.

تحقيقات انجام شده در مورد اين بيماران نشان ميدهد كه تمرينات بيوفيدبك ميتواند ، در جهت رفع حواس پرتي و بيش فعالي انها موثر باشد و منجر به افزايش سطح كاراي مغز انان شود . با تخمين ميتوان گفت ۶۵تا۷۵درصد از بيماران ،اظهارداشتند كه مزاياي زيادي از بيوفيدبك الفا بدست اورده اند و ساختار روان شناختي اين افراد بهبود يافته است .در دو مطالعه ي كلينيكي افزايش ميانگين ضريب هوشي از ۱۹به ۲۳نشانه به اثبات رسيد وامكان بهتر شدن بسياري از رفتارها از جمله حالت بي رحمي در كودكان وجود دارد . در موارد ترس و وحشت و بيش فعالي نيز بهبودي تدريجي ديده مي شود .

صرع و درمان غير دارویی

بیو فید بک و نورو فیدبک درمان پزشکی

واژه ي صرع به معناي غافلگير كردن از زمان بقراط حكيم مرسوم بوده و منظور اختلال مزمن وطغيان عمل مغزي است كه به علت تخليه الكتريكي نا متعارف ومتناوب مغز پيدا ميشود و علايم ان حملات ناگهاني و موقت ، بيهوشي و تشنج متناوب با فواصل سلامت ظاهري است . بعضي از متخصصان معتقدند وجود امواج بتا (امواج كوتاهي كه فركانس زيادتري از ساير امواج مغزي دارند )به طريقي مانع از بروز امواج صرعي ميشود و كمبود اين امواج در فرد مصروع ، موجب استعداد وي به بروز امواج صرعي مي شود . به علاوه در بيماران صرعي ، امواج الفا كه امواجي ۸تا۱۳سيكل در ثانيه هستند از فركانس پايين تري بر خوردارند و به همين طريق شيوع امواج تتا (امواجي با فركانس ۴تا۷)در اين افراد بيشتر است . به نظر ميرسد اين تركيب در امواج مغزي زمينه ي تشنج را مي سازند .

تمرينات بيوفيدبك به مبتلايان به صرع كمك مي كند بتوانند فعاليت امواج بتا را در خود افزايش داده و در همان حال از امواج الفا و تتا ي خود را بكاهند و به اين ترتيب از ميزان تشنج كاسته شود .روش هاي بيوفيدبك متفاوتي براي درمان حمله هاي صرعي معرفي شده اند كه بهترين روش شناخته شده روشي است كه توسط (استرمن ) و همكارانش به كار گرفته شد ، بر اثر اين روش افزايش ريتم الكترو انسفالو گرافي در ناحيه حسي ، حركتي ميتواند فرد را نسبت به ابتلا صرع مقاوم تر نمايد .

بيوفيدبك در روانشناسي :

بیو فیدبکایرکاس

رابطه ي تصورات ذهني و ارامش تصورات و تخيلات ، الگوهاي ذهني هستند كه بر كنش و رفتار هر شخص اثر مستقيمي دارد كه حالات روحي ، شخصيت و حساسيت هر فرد را در بر ميگيرد .قوي ترين قواي انسان ، قوه ي (مخيله )است زيرا بدون وقفه و ۲۴ساعته ختي بدون حضور محرك كار ميكند و اثار عميقي در نگرش و تفكر و حالات روحي ما دارد . بيوفيدبك در روانشناسي حالتي است كه شخص اگاهانه به حالت ها و احساسات قبلي خود برگشت مي نمايد تا بتواند احساسات خود را عميقا درك كند و انها را تحت كنترل ارادي خود بگيرد . بيوفيدبك قويترين و موثرترين روشي ميباشد كه براي كنترل ذهن بكار گرفته ميشود تا قرد تمام حالات روحي خود را تحت كنترل بگيرد و غير ارادي عصبي و مضطرب نشود .

در تمرينات پيشرفته بيوفيدبك از تمرين كننده خواسته ميشود كه با احساسات خود به دلخواه عمل كند .با تكرار تمرينات يك پايه عكس العمل جديدي بوجود مي ايد كه تمرين كننده را قادر مي سازد به تدريج از دردهاي عمومي كه از وابستگي ها وتجارب زندگي بر مي خيزد دوري جويد . بر همين اساس تجارب درداور تپش قلب ، عرق كردن ،سرخ شدن ، لرزش دست و پا ، سردردهاي عصبي ،خشونت و كج خلقيها كاهش يافته و با تجربه واقعي از بالا بردن خوشي و لذتها و تمام دوگانگيها عبور كرده و در جهت تعادل سوق مي يابد .

بيوفيدبك كنترل عكس العمل هاي احساسي و غير ارادي را توسعه ميدهد . گاه احساسات به صورت سمبليك در ضمير ناخوداگاه نقش گرفته به طوري كه ديو سمبل پليدي و ازار و تاريكي سمبل بدبختي ها است . مثلا كودكي كه از پدرش متنفر است او را همچون ديو كه باعث ازارش ميشود در ذهن خودش جانشين مي كند كه دايم سعي مي كند از ديو انتقام بگيرد ،در حالت بيوفيدبك ذهن ناخود اگاه به صورت نيت كردن دشمن را از بين برده و خوبيها را جايگزين ميكند.

انواع تصورات :

_تصور فضاهاي سبز و محيط خوش اب و هوا

_تصورات برترين شخصيت

_تصور راحتي كار ها

و

Fnourofeedbak

نوروفيدبك :

نوروفيدبك به عنوان شكلي از بيو فيدبك ، روشي ايمن و بدون درد است، در رايج ترين روش مورد استفاده براي نوروفيدبك ، بيمار در مانيتور خود يك بازي ويديوي انجام ميدهد . البته بر خلاف بازي هاي رايج بيمار نبايد از دست خود استفاده كند بلكه اين كار را از طريق الگوي امواج مغزي خود انجام ميدهد .

درمانگر در طول درمان امواج مغزي و تحليل هاي صورت گرفته از انها را در مانيتور خود مشاهده مي كند و جريان بازي را به گونه اي هدايت مي كند تا الگوي مناسب و بهنجار امواج مغزي فعال گردد .

بیو فیدبک نورو فیدبک ایرکاس

بيماريهاي قابل درمان با نوروفيدبك :

-‏بیش‌فعالی/ كمبود توجه (‏ADHD‏): بیش از هر بیماری دیگری، برای درمان ‏ADHD‏ از نوروفیدبك استفاده شده است. مطالعات و تحقیقات ‏ مختلفی تأثیر این درمان را بر ‏ADHD‏ ثابت كرده‌اند.چندین درمانگر مجرب اظهار داشتند 85-80% بیماران مبتلا به ‏ADHD‏ به وسیله ‏نوروفیدبك بهبودی كامل یافتند.

‏-‏اضطراب (‏Anxiety‏) :بسیاری از متخصصان، به كارگیری نوروفیدبك به منظور درمان اضطراب را یكی از عمده‌ترین موارد و زمینه‌های استفاده‏ از نوروفیدبك می‌دانند. اكثر آن‌ها معتقدند اضطراب یكی از اولین بیماری‌هایی بود كه به نوروفیدبك پاسخ داد. نتایج پژوهشی نشان می‌دهد ‏كه در حدود 90-80 % از بیماران اضطرابی با این روش درمان شده‌اند. برخی از اختلالات اضطرابی كه با این روش درمان می‌شوند،‏ عبارتند از: اختلاس وسواس فكری ـ عملی (‏OCD‏)، حملات هراس (‏Panic‏)، فوبی‌ها (‏Phobias‏) و اختلال استرس پس از سانحه (‏PTSD‏).

-‏ اختلالات یادگیری (‏learningDisorder‏): این اختلالات در سنین دبستان شایع هستند. در این نوع اختلالات علی‌رغم هوش نرمال و عدم ‏وجود نقص حسی، كودك در یادگیری مشكل دارد. این اختلالات موارد زیر را در بر می‌گیرد: نقص توانایی برای شناخت واژه‌ها، خواندن كند و ‏نادرست، مشكل در فهمیدن و نام بردن اصطلاحات ریاضی، عمل‌ها و مفاهیم، و گروه‌بندی ارقام، رعایت مراحل ریاضی، شمارش، جدول ‏ضرب و نیز مشكل در یادگیری نوشتن لغات و جملات. در درمان این اختلالات نوروفیدبك تحول بزرگی ایجاد كرده است. در مورد اختلالات ‏یادگیری، نوروفیدبك به تنهایی پاسخگوست و نیازی به درمان مكمل ندارد. معمولاً با كامل كردن یك دوره درمانی، بهبودی ثابتی حاصل ‏می‌شود. تأثیر این روش در چندین پژوهش علمی و معتبر نیز تأیید شده است‏.

بیو فیدبک نورو فیدبک

-‏اختلالات خواب (‏SleepDisregulation‏): اولین تغییراتی كه مراجعین عموماً بعد از شروع درمان با نوروفیدبك مشاهده می‌كنند، تغییر و ‏تنظیم خوابشان است. بنابراین از نوروفیدبك هم در درمان اختلالات خواب نیز می توان استفاده كرد.

‏-‏ صرع، ضربه سر و سكته مغزی (‏Seizure, Head Injury, Cerebral apoplexy‏):در انواع صرع و در مواردی كه داروها مؤثر نبوده‌اند و بیماری ‏بسیار مزمن و غیرقابل كنترل بوده است، نوروفیدبك در درمان 70 تا 90% از بیماران موفق بوده است. در اكثر موارد نوروفیدبك باید با دارو درمانی همراه باشد، اما حدود 20% از بیماران می‌توانند مصرف دارو را پس از درمان با نوروفیدبك قطع كنند ‏. ‏تأثیراتی از این درمان در موارد ضربه به سر و سكته مغزی نیز گزارش شده است.

‏-‏ دردهای مزمن و سردردهای میگرنی (‏chroniapain, Migraines‏):درمانگران و پزشكانی كه از نوروفیدبك برای درمان دردهای مزمن و ‏سردردهای میگرنی استفاده كرده‌اند، اعلام كردند كه وقوع و شدت حملات میگرن در اكثر موارد با استفاده از این روش كاهش می‌یابد و ‏حتی از بین می‌رود ‏.در دردهای مزمن نیز نوروفیدبك به كاهش درد و كنترل آن (حتی در موارد خیلی شدید) كمك كرده است.

‏ ‏-‏ افسردگی (‏Depression‏): در مورد بیماران مبتلا به افسردگی اساسی (‏Major Depression‏) كه هیچ درمانی برای آن‌ها كارساز نبوده، ‏نوروفیدبك در اغلب موارد نتیجه بخش بوده است‏.

در برخی از كشورها یكی از بهترین و معمول‌ترین درمان‌ها برای افسرده‌خویی (‏Dysthymia‏) [افسردگی خفیفی كه بیش از 2 سال دوام دارد، ‏اما زندگی فرد را مختل نمی‌كند]، نوروفیدبك است.

‏-‏سوءمصرف مواد (‏substance abuse‏):مطالعات نشان داده است كه در مقایسه با درمان‌ها برای دیگر اعتیاد، درمان با نوروفیدبك از بسیاری ‏از روش‌های دیگر موفق‌تر بوده است. علاوه بر این درمان با این روش وسوسه و ولع فرد را كاهش می‌دهد و در درازمدت احتمال عود و ‏بازگشت را پایین می‌آورد ‏.از طریق نوروفیدبك می‌توان تمامی موارد اعتیاد و نیز سوءمصرف الكل را درمان كرد.

هرگاه فرد شناخت كافي نسبت بيماري خود و اثرات آن داشته و بتواندكنترلي بر انها داشته باشد ميتواند از روش بيوفيدبك در درمان بيماري هاي غير ارادي بدن استفاده نمايد ، حتي اگر فرد بيماري خاصي هم نداشته باشد بيوفيدبك به حفظ سلامتي و ارتقا ان كمك خواهد كرد.

تصویربرداری مولکولی www.ircas.ir

تصویربرداری مولکولی

تصویربرداری مولکولی به تصویربرداری که از روشهای بیولوژیکی استفاده می کنند تصویربرداری مولکولی گفته می شود. این تصاویر از آزمایشگاههای تشخیصی بدست می آید. کاربرد آن در تحقیقات برای سادگی آزمایشات عملکرد متابولیک الگوهای تظاهرات ژنی یا پرسشهای فارماکولوژیکی در ارگانهای زنده می باشد.

با گشودن رموز ژنوم (مجموعه‌ای از ژنهای سلولهای جنسی) انسانی و با دانستن مراحل پاتولوژیکی در سطح مولکولی (در راستای پیشرفتهای تکنولوژی) تصویربرداری با روش تشخیص بیولوژیکی مولکولی ایجاد خواهد شد. به تصویربرداریهای پزشکی که از تکنیکهای بیولوژیکی مولکولی بدست آمده از آزمایشگهاههای تشخیص استفاده می‌کنند، تصویربرداری مولکولی گفته می‌شود.

در تشخیص پزشکی روش تصویربرداری پزشکی راه را برای رسیدن به یک پیشرفت مهم در زمینه شناخت بیماریهای وابسته مولکولی هموار می‌کند. از آن زمان تا به حال همیشه تغییرات در سطح مولکولی بر بازسازی آناتومیکی در تصویربرداری‌های کانورژنال (مرسوم) پیش است و روشهای تصویربرداری بیولوژیکی مولکولی قادر به تشخیص سریعتر مرحله یک بیماری است.
در این مقالهdriving forces (نیروهای محرک) تصویربرداری مولکولی مختصراً شرح داده می‌شود و یک تأثیر از پتانسیل این روشها را بیان می‌کند.

تصویربرداری مولکولی چیست؟

تصویربرداری مولکولی چیستکنسرسیوم ایرکاس
تصویربرداری مولکولی را می‌توان هنگام اندازه‌گیریin vivo و توصیف مراحل بیولوژیکی در سطح سلولی مولکولی تعریف کرد. در مقایسه با روش تصویربرداری تشخیصی کانورژنال این روش ابنرمالی‌های مولکولی مهم را که در زمینه بیماری قرار دارد را به جای نشان دادن تأثیر یا شناسایی آناتومیکی تغییر ملکولی نشان می‌دهد. اصولاً تصویربرداری مولکولی بر تکنیکهای بیولوژیکی (مولکولی) بنیادی یکسان که دهه‌ها در تشخیص‌هایinvitro استفاده می‌شود، بنا شده است. به خصوص تکنولوژیهای آنتی بادی و پپتید شیمیایی. پارامترهای سلولی آشکار شده همانند گیرنده‌ای(receptor) سطح سلول و فعالیتهای آنزیمی همچنین می‌توانند یکسان باشند.
بنابراین جنبه‌های توکسیکولوژی یاسدهای انتقال آناتومیکی مانندسدعروقی مغزیBBB)       ( در تشخیص‌های آزمایشگاهی اهمیت ندارند، سازگاری زیستی و انتقال مستقیم به بخش هدف یا سلول هدف از فاکتورهای قطعی بر موفقیت کلینیکی یک عامل کنتراست (بیولوژیکی مولکولی) هستند.
عناصر کلیدی زیر برای تصویربرداری مولکولی مورد نیاز است:
i. 
عامل کنتراست طراحی شده برای نشان دادن مولکول خواسته شده. ( برای مهمترین قسمت ماکرومولکولهای بیولوژیکی وجود دارد.)
ii. 
یک مکانیسم تقویت کننده
iii. 
و یک وسیله تصویربرداری مناسب
برای آشکار ساختن تومورها از عامل کنتراست استفاده می‌شود. به عنوان مثال: آنتی‌بادیهایی که به طور انتخابی، باسطح نشاندار یک سلول بدخیم باند می‌شوند. در این موارد، استفاده از مشتقات آنتی‌بادی ساخته شده ژنتیکی در مقایسه با آنتی‌بادیهای طبیعی ترجیح دارد که مقاومت(tolerance)و فارماکوکنیتک را بهبود بخشیده است.
اگر عامل کنتراست با یک نشانگر مانند رادیونوکلئیدها و رنگ‌های فلورسنت برای به تصویر کشیدن همراه شود، می‌توان مستقیماً با یک آشکارساز خوب و مناسب تصویر را ثبت کرد. از زمانی که مجموعه مولکولهای هدف تنها در محدوده پیکومولار تا نانومولار قرار می‌گیرد، غالباً روشهای تصویربرداری پزشکی هسته‌ای مناسب هستند. در روشهای تصویربرداری با حساسیت پایین مانندMRI باید از مکانیسم‌های تقویت سیگنال اضافی استفاده شود. چنین مکانیسم‌هایی بر روی حیوانات آزمایش شده و در کتابها توضیح داده شده‌اند. اصولاً این مکانیسم‌ها شامل ژن‌تراپی (ژن‌درمانی) می‌شود که روشهایی هستند که بر اساس عملکرد   DNAخارجی هستند.

نیروهای هدایت کننده (محرک) تصویربرداری مولکولیdriving forces
تکنولوژی اطلاعات، میکروالکترون‌ها و ارزش بهینه‌سازی شدیداً تصویربرداری پزشکی را متأثر می‌کند. هدایتگرهای خاص تصویربرداری مولکولی شامل تحقیق علوم زیستی پایه می‌شود که تحقیق و توسعه فارماکولوژی (داروشناسی) و مفهوم ترانوسیتکtheranostic و ژن‌درمانی است. این فاکتورها در جزئیات مهم‌تر آنچه دنبال می‌گردد، آزمایش خواهد شد.

تصویربرداری مولکولی در تحقیق علوم زیستی پایه و توسعه داروسازی
تحقیق و توسعه فارماکولوژیکی بر تحقیقات پرخطر و پر هزینه بنا شده است. میزان موفقیت اسکرینیگ مرکب پیش کلینیکی کمتر از ۱۰% است. ۹۰% داروهای انتخابی دیگر در طول آزمایشات انسانی بعد کلینیکی رد می‌شود.
برای آزمایشات اولیه بر روی انسانها که به طور متوسط برای هر داروی تصویب شده جدید ۵۰۰ میلیون دلار را در بر می‌گیرد، هزینه ایجاد می‌گردد. در نتیجه افزایش تقاضا برای تحقیق در زمینه طرحهای تحقیقاتی آینده ژنوم انسانی، قیمتها حتی بالاتر خواهند رفت.
طبق مطالعات برنامه‌ریزی شدهMckinsey پیش‌بینی شده که هزینه (بودجه)D وR یک شرکت داروسازی بزرگ معروف دو برابر می‌شود یعنی از ۶/۱ بیلیون دلار به ۲/۳بیلیون دلار تا سال ۲۰۰۵ می‌رسد. در واقع فشارهای قیمت نسبتاً زیاد به مجوز مدت مصرف دارو و رقابت بین تولیدکننده‌های داروهای ژنریک بستگی دارد.
مطابقMckinsey نوآوریهای تکنولوژی ممکن است بتوانند که قیمتهای  Dو Rرا تا ۶/۲بیلیون دلار در سال ۲۰۰۵ محدود کنند. در حال حاضر مهمترین امکان پیشرفت که بررسی شده، افزایشthroughput آزمایشات مرکب زودرس به طریق
HTS (high throughput screeing)
است.
وقتی که داروهای مشتق شده از ژنوم انسانی کشف نشده‌اند، اهمیت اعتبار داروهای بیولوژیکی در آینده افزایش خواهند یافت. آخرین برآوردها یک مجموعه‌ای از ۳۰۰۰۰ ژن انسانی را که برای ۱۰۰ هزار بیمار شناسایی شده را فرض می‌کند. بیشتر از یک دهم بیماران برای اهداف داروهای پتانسیل بررسی شدند. (تنها ۵۰۰ نوع آن بوسیله داروهای اخیر در بازار شناخته شده است.)
هر پروتئین در ارگانیسم بین ۵ تا ۵۰ عملکرد متفاوت دارد. در نتیجه این عملکردهای متعدد و بر همکنش‌ها، شیوه عمل بسیار رایج که بر ژنهای منفرد یا پروتئین‌ها متمرکز شده است برای بهبود درک بیشتر مراحل پاتولوژیک و احتمال ترمیم‌شان از طریق دارودرمانی مناسب نیست.
کاملاً واضح است که تأثیر داروها در یک سیستم مرکب که ممکن است خودشان را در تأثیر لبه نشان دهند، نمی‌توانند در روشهایin vitro تحقیق مورد استفاده قرار گیرند. از آنجا که هدف افزایش میزان موفقیت کلینیکی است لازم است که قبل از آن داروهای انتخاب شده بر روی یک سلول زنده بی‌نقص آزمایش شود و سپس بر روی انسان مورد بررسی قرار بگیرد.
امروزه برای تحقیق در مورد روشهای متابولیکی سلولی مرکب، اغلب سلولها را از بافت جدا می‌کنند و سپس در محیطin vitro در فلاسک‌های رشد پرورش داده می‌شود.
میزان محدودیتهای سیستم‌های مصنوعی از زمانی بیشتر آشکار می‌شود که سلولهای توسعه یافته با شرایط محیطی تغییر یافته و میزان سهم موجود زنده منطبق گردد. در نتیجه آزمایشهای حیوانی به بسیاری از سئوالات داروسازی پاسخ نخواهد داد و همچنین اهمیت آن زمانی بیشتر خواهد شده که نگرانی‌های اخلاقی وجود دارند.
مدلهای حیوانی کوچک هم‌اکنون یک ابزار تحقیق اساسی برای درمانهای جدید معتبر بیولوژیکی را تشکیل می‌دهند. بنابراین در تحقیقات پایه، مدلهای حیوانی کوچک همانند موشهای از پا درآمده (موشهایی که یک ژن خاص آنها برانگیخته شده است.) لازم است. اگرچه مدلهای حیوانی کوچک هنوز کاملاً از تشخیص دور هستند. مهمترین محدودیت بافت ملکولی که آنالیز شده این است که تنها در حیوانات زنده در یک حساسیت محدود شده ممکن است.
بعنوان مثال، قادر است که اندازه‌های کینتیک (جنبشی) عملکرد یک دارو را با چندین مقدار اندازه در بیشتر از یک محدوده زمانی خاص بدست آورد، یک تعداد مشابهی از حیوانها باید در پروتکل آزمایشی خاصی درمان شوند. پس از ان حیوانات آزمایشگاهی باید به طور متوالی کشته شوند. در بسیاری از موارد این عمل مطابق یک آنالیزمولکولی با تمام جزئیات انجام می‌شود. قیمت چنین آزمایشهایی چندان ناچیز نیستند چون موشهای طراحی شده ژنتیکی بسیار گران قیمت هستند.
به علاوه قابلیت تولید و به موجب آن اهمیت آماری یک سری آزمایشان می‌تواد با تفاوتهای فردی و درونی سازش یابد. در این مورد، تکنیک‌هایin vitro می‌توانند با امکان آنالیزهای ملکولی تکرار شونده یک حیوان منفرد راه حلی فراهم کنند.
در نتیجه تصویربرداری مولکولی با حیوانات کوچک زمانی که با کنترل قیمتهای مربوط به توسعه‌های پیش‌کلینیکی همراه شود می‌تواند به طور اساسی بازده اعتبار بیولوژیکی داروهای انتخابی را بهبود بخشد.
نقش تصویربرداری مولکولی در فرضیه ترانوستیک
ترانوستیک هنگامی که رابطه بسیار نزدیکی بین تشخیص و درمان وجود دارد معنی می‌شود. هدف ترانوستیک توانایی انجام درمان مناسب برای بیماران خاص در یک زمان صحیح است.
به طور معمول پزشکان تجربی یک بیماری را از روی علائم و نشانه‌های بیمار تشخیص می‌دهند و درمان اختصاصی را شروع می‌کنند. گاهی تست‌های آزمایشگاهی و روش تصویربرداری بکار گرفته می‌شوند، زمانی درمان را موفق می‌دانند که علائم کمی بعد از دوره درمان ناپدید شود. مدافعان فرضیه ترانوستیک تبدیل سیستم سلامتی را از درمان بیماریها به مراقبتها و خدمات سلامتی پیش‌بینی می‌کنند. اساس این دیدگاه حفظ سلامتی است. با فهمیدن این فرضیه که ثبت مراقبتها را در وضعیت سلامتی بیان می‌کند. تشخیص‌های جامعی بدست خواهد آمد که ترجیحاً درمرحله بدون علامت صورت می‌گیرد. برای تعیین پیشگیری‌های ژنتیکی تنها روش‌های in vitro(آزمایشگاهی) مانند تکنیک چیپDNA بکار خواهد رفت.
اهمیت نقش تصویربرداری در تشخیص‌های زودرس حفظ خواهد شد و توسعه خواهد یافت. از زمانی که تصویربرداری مولکولی قادر به نشان دادن تغییرات در سطح مولکولی است، تشخیص می‌تواند در مرحله اولیه دوره یک بیماری انجام شود، حتی قبل از اینکه تغییرات مولکولی در شکل ساختار آناتومیکی آشکار شوند. به عنوان مثال، استفاده از تکنیک‌های تصویربرداری بیولوژیکی مولکولی امکان تشخیص پاتولوژی‌های تومور را بیشتر از ۷ سال زودتر از روشهای رایج فراهم می‌کند.
به علاوه برنامه درمان و مونیتورینگ درمان در بهبود بیمار مطابق فرضیه ترانوستیک اهمیت بیشتری دارد. اکنون تصویربرداری مولکولی به طور شایعی برای طرحهای درمانی مورد استفاده قرار می‌گیرد. که به طور کامل در شکل (۱) به منظور رادیوتراپی شرح داده شده است. SPECT/ MRI/ CTتصویر ترکیبی موقعیت و توزیع فضایی فعالیت متابولیکی یک تومور پروستات را برای محاسبه توزیع دوز تابشی نشان می‌دهد. شکل (۲) نشان می‌دهد که چطور تصویربرداریdual PET/CT می‌تواند برای مونیتورینگ درمانی بکار رود.
تصویر یک بیمار ۷۴ ساله را بدون لمیفوماهوجکین قبل و بعد شیمی‌درمانی را نشان می‌دهد. از بین رفتن تومور کاملاً آشکار است. در این مثال از فسفر ۱۸نشاندار شده با دی‌اکسید گلوکز به عنوان یک ماده کنتراست برای نشان دادن شرایط متابولیکی تومور استفاده می‌شود.
زوال بدخیمی بوسیله یک مارکر غیر مستقیم بر اساس تغییرات توازن انرژی سلولهای تومور تعیین می‌شود. در آزمایشات حیوانی عامل کنتراست اخیراً توسعه یافته است به طوری که مستقیماً به پیش‌نیازهای حیاتی رشد تومور پی برده‌اند. آنژیوژنز و آلوپتوز و تهاجم بافتی مورد توجه خاص هستند.
شکل (۳) یک تصویر فلوروسنت را از یک مدل تومور حیوانی کوچک نزدیک باند طول موج مادون قرمز نشان می‌دهد. در تومور پستانی انسانی را با تهاجم بافتی مختلف به موش پیوند می‌زنند.
بر طبق متفاوت بودن مقدار تهاجم به موش یک عامل کنتراست فلورسنتی توموری خاص در شرایط غیرفعال تزریق می‌شود. عامل کنتراست درتوموری که تهاجم بیشتری یافته است بوسیله یک آنزیم، یک پروتئاز که رشد تومور را با درگیر کردن اطراف بافت سالم تسهیل می‌کند، فعال می‌شود. عامل کنتراست را می‌توان برای آنزیمهای مختلف تهیه کرد. از زمانی که بسیاری از آنزیم‌ها به عنوان اهداف دارویی برای شیمی درمانی انسانی به کار می‌روند، پیشرفت بسیاری در زمینه طرح درمانی و مونیتورینگ درمانی ایجاد شده است. همچنین تشخیص‌های مولکولی برای انجام کلینیکی درمان اختصاصی بیش از پیش به یک داروی خاص مناسب برای یک مجموعه ژنی بیمار خاص نیاز دارد.
اکنون تعدادی از شرکتهای داروسازی فرضیه ترانوستیک را در بازارهایشان بکار می‌برند. اولین شرکتی که موجب رواج این نظریه شد شرکت فارمانتیکس بود که از وارفارین استفاده کرد. شرکت دیگری نیز به دنبال آن از روش نشاندار کردن دارو استفاده کرد. مقایسه بازارهای مشترک یا طرحهای تبلیغاتی مشترک در آینده به منظور صنعت عامل کنتراست و سازندگان وسایل قابل تصور است.
تصویربرداری مولکولی در طرح درمان و مونیتورینگ ژن درمانی
امکان مالی و تجربیات پزشکی نظریه ترانوستیک هنوز جای بحث دارد. روش آزمون و خطا آنقدر ادامه خواهد یافت تا به درمان‌های مؤثرتر بدون عوارض جانبی برسند. اگرچه بسیار پرخطر و گران قیمت هستند. در چنین مواردی وقتی یک تشخیص با درمان تقریباً متناسب باشند، فاکتور قطعی در جهت بهبود بیمار است. حتی ازدیدگاه مالی افزایش تشخیص‌ها توجیه کننده است.
یکی از درمانهای پرخطر و پرهزینه ژن‌درمانی است. برای هر درمان خاص با عوارض جانبی حدی باید تاریخچه کلینیکی فردی بیمار با اطلاعات تشخیصی متناسب باشد. به طوری که یک روش تشخیصی کم تهاجمی تصویربرداری مولکولی جایگزینی برای بیوپسی و هیستولوژی (بافت شناسی) است. در زمینه ژن‌درمانی در آنکولوژی، تصویربرداری خصوصیات محل و آناتومی یک زخم را نشان نمی‌دهد و همچنین امکان آنالیز مولکولی گیرنده‌ها و خصوصیات ژن را با داشتن اطلاعات بیماران خاص، یک رژیم درمانی در موارد مختلف هر بیماری در شرایط خاص یک بیمار انتخاب شده است. درfollow up (پیگیری) مونیتورینگ ژن‌درمانی نقش یک تعادل مطابق تصویربرداری مولکولی خواهد بود. عوامل ژن‌درمانی بر پایه آدنوویروس‌ها به طور شایع در کبد بدون دسترسی بافت هدف به سنگینی انباشته می‌شود.
عوامل جانبی هپاتوکسیک جدی در برابر تمرکز ناکارآمد عوامل درمانی در بافت هدف، عوامل انباشتگی ژن‌درمانی و حالت ژن خارجی باید در طول دوره درمان بیان شود.
(چگونگی) مدالیته تصویربرداری مولکولی
مدالیته تصویربرداری برای تصویربرداری مولکولی شامل تصویربرداری پزشکی هسته‌ای با پرتوداروهای مانند عوامل کنتراست و دوربین‌های گاما مانند آشکارسازها(SPECTوPET) توموگرافی تشدید مغناطیسی و تصویربرداری‌های نوری مورد توجه است.
روشهای پزشکی هسته‌ای به خاطر حساسیت بالایشان و بدست آوردن تنها مقدار کوچکی از عوامل کنتراست را در محدوده پیکومولار تا نانومولار مناسب هستند. چون واپاشی رادیواکتیو مکانیسم تولید الکترون است، مقداری از نتایج نسبتاً ساده هستند. اگر چه کمیت مشکلتر ایجاد شده است. به وسیله اسکترو تضعیف مقدار در بافت و یکی از عدم مزایای آن قدرت تفکیک فضایی پایین است که مقدار تقریبی آن با وسایلSPECT کلینیکی یک سانتی‌متر است و دامنه میلی‌متری با دستگاههایPET (High end) مانندECAT EXACT HR بدست می‌آید.
امروزه حتی فرآیندهای متابولیکی در سطح مولکولی برای استفاده در رادیوداروهای خاص قابل رؤیت شده‌اند بوسیلهPET متابولیسم گلوکز با کمک فلوئور نشان داده شد(FDG) و استفاده از مولکول به تصویر کشیده شده است. به عنوان مثال اطلاعاتی که در مورد استفاده    SPECTدر شکل ۱ نشان داده شده است. تصویر ۱ یک تومور پروستات را که در هنگام استفاده از سیگنال آنتی‌بادیهای تک‌کولونیIn نشاندار شده نشان می‌دهد. اطلاعات مورفولوژیکی و آناتومیکی این تصویر از طریق یک تصویرCT (استخوان) و یکMRI  (پروستات) بدست می‌آید. تصویر نهایی از سوپراپمیوز شدن این دو تصویر با تکنیک ترکیبی بدست می‌آید.
مزیت عمده توموگرافی تشدید مغناطیسیMR tomography این است که به طور همزمان اطلاعاتی در مورد مورفولوژی و هم در مورد عملکرد فراهم می‌کند. در یک زمان یکسان قدرت تفکیک فضایی بیشتری بدست می‌آید. اگرچه در مقایسه با روشهای تشخیص هسته‌ای، (در دامنه‌های میلی‌مولار) برای تولید سیگنالی با قدرت کافی به طور قابل ملاحظه‌ای به مقدار بیشتری از عوامل کنتراست نیاز است. با افزایش نسبت سینگنال به نویز و قدرت تفکیک فضایی، تکنیکهای اندازه‌گیری مانند انتقال به نیروی دامنه اصلی بالاتر و بهبود دامنه‌های گرادیان قویتر ضروری هستند. اگرچه هر دو تنها در حد محدودی امکان‌پذیر هستند.
MRI
یک بستگی محکم قدیمی با روشهای مولکولی در شکلMRI اسپکتروسکوپی داشته است. در اسپکتروسکوپی سلولهای خاصی که در متابولیسم جدا می‌شوند، مورد ارزیابی واقع می‌گردد. اگرچه قدرت تفکیک فضایی بدست آمده با اندازه‌هایvoxel تقریباً ۲ تا ۱ محدود می‌شود.
هنگامی کهMRI نسبتاً غیرحساس است و چگالی‌های عوامل کنتراست بدست آمده بالاست، تصویربرداری مولکولی باMRI تنها به تدریج وارد بخشهای کلینیکی خواهد شد. از این رو روشهای بسیار جالبی برای مکانیسم تقویت سیگنال وجود دارد که بوسیله متابولیسم وMRI مولکولی دارای پتانسیل مهم فعال شده است.
تصویربرداری نوری با عوامل کنتراست فلورسنت روش جالب دیگری را برای جستجوی پردازش‌های مولکولی مانند آنچه در بالا شرح داده شد (شکل ۳) نشان می‌دهد. این روش این امتیاز را دارد که جذب و خاصیت اتوفلورسنتی بافت درنزدیک باند مادون قرمز (طول موجهای بین ۷۰۰ تا ۱۰۰۰ نانومتر) نسبتاً کم است. اگرچه انتشار نور در بافت مانع قدرت تفکیک فضایی بالا می‌شود. در نتیجه روشهای متعدد تصویربرداری نوری موفق‌تر خواهند بود. در هر نسبتی تصویربرداری نوری یک اسپکتروم عریض از امکانات کاربردی شامل دامنه‌ای کاربردهای سطحی تصویربرداری‌های فانکشنال حین جراحی تا تصویربرداری‌های اندوسکوپیک حفره داخل بدن معرفی می‌کند.
خلاصه اینکه تصویربرداری مولکولی بر روی تصویربرداری تأثیرگذار خواهد بود. نمایش ژنوم انسانی بیولوژی مولکولی به طور قابل ملاحظه‌ای بر میزان رشد اخیر آزمایشگاههای تشخیصی مؤثر بوده است. از دیدگاه بسیاری از کارشناسان، روشهای تشخیصی جدید دوره جدیدی را مانند DNA-chip دوره جدیدی را در صنعت تشخیص ایجاد خواهد کرد. از زمانی که میزان تشخیص‌هایinvivo وinvitro در دامنه تک رقمی پایین برآورد می‌شود، میزان پیشرفت زیرمجموعه‌های آزمایش‌های بیولوژی مولکولی invitro بالغ بر ۲۰% است. ما معتقدیم که این پیشرفت را می‌توانیم در تصویربرداری هم داشته باشیم و این تنها زمانی امکان پذیر است که تکنیکهای بیولوژی مولکولی از تشخیص‌های invitro که نیازهای خاص تصویربرداری تشخیصی هماهنگ است کمک بگیرد. ابزارهای موجود با نیازهای تصویربرداری مولکولی که لازم است تنظیم شده است و پروتکل‌های هماهنگ ایجاد گشته است. اگر نیازهای مورد نظر مرتفع گردد، تصویربرداری مولکولی بعنوان یک مکمل در خدمت به دیگر روشهای تصویربرداری و روشهای تشخیصی خواهد بود که قادر به تشخیص‌های سریعتر و مخصوص‌تر باشند و به پزشک برای فراهم کردن درمان مناسبی که با سوابق کلینیکی هر بیمار مطابقت دارد کمک می‌کند. اکنون پیشرفتهای دلگرم‌کننده‌ای در تحقیقات حیوانی به وجود آمده است. سرانجام به نقل از یک آنکولوژیست معروف بنام Michael Oreilly تصویربرداری مولکولی به خوبی کاربرد دارد.

ساخت شبیه ساز ECG

آموزش ساخت شبیه ساز ECG

یکی از تجهیزات مهم برای تست تجهیزات پزشکی در کارگاه های مهندسی پزشکی تستر یا شبیه ساز ECG قلب بیماراست. شبیه ساز ECG بیمار به مانیتور ECG متصل می شود و سیگنال ECG معمولی را نمایش می دهد. تنها با چنین تستر و شبیه سازی می توان یک مانیتور ECG را تعمیر، توابع و تنظیمات آلارم آن و قطعی اتصالات کابل بیمار را بررسی کرد. شبیه سازی بیمار معمولا هزینه های بالایی دارد که برای کارگاه های مهندسی پزشکی در بیمارستان های کوچک کشورهای در حال توسعه این هزینه ها قابل تامین نمی باشد.

اما ساخت و طراحی یک مدار الکترونیکی که بتواند سیگنال های ECG را شبیه سازی نماید نباید بیش از حد دشوار و هزینه ی بالایی داشته باشد. که در اینجا می خواهیم به شما روش ساخت شبیه ساز ECG را بدون IC خاص یاعجیب و همچین قطعاتی که به راحتی می توان آنها را دربردهای الکترونیکی و یا فروشگا ها پیدا کرد و در دسترس اند معرفی کنیم. در این مدار از یک کریستال کوارتز برای شبیه سازی و ایجاد سیگنال ۶۰ و ۱۲۰ ECG قلب استفاده شده است.

ECG trace with grid copy

توضیح در مورد عملکرد شبیه ساز ECG :

سیگنال ECG بالا از ساختار پیچیده ای تشکیل شده است که میتوان آن را توسط سیگنال های مختلف به وجود آورد.سیگنال های P، Q، R، S، T، در مراحل مختلف تشکیل می شود و پس از یک شیفت رجیستر در سمت راست تکرار می شود RC. (مقاومت و خازن)ترکیب فرکانس و دامنه امواج است.

IC1 (آی سی شماره ۱)از یک نوسان ساز و یک شیفت دهنده رجیستر تشکیل شده است. در خروجی pin10 یک سیگنال ۱۶ هرتز که باعث محرک IC2 (آی سی شماره ۲)می باشد. IC2 یک شمارنده با ۱۰ خروجی است. زمانی که خروجی ۰ از IC2 فعال است (pin3) درR-C ترکیبی از R8،C5  که موج P را تولید می کند.وقتی که شمارنده به خروجی۳ (pin10) برای ایجاد موج R که توسط R4، C4 ایجاد می شود بخش منفی توسط دو دیود وشبیه ساز موج S کاهش می یابد. زمانی که خروجی ۵ فعال است (PIN1) موج T توسط R7 و C5 ایجاد می شود.خروجی هایی که به هم متصل نیستند مکث مورد نیاز بین سیگنال ها را ایجاد میکنند وتمام سیگنال ها را با هم از طریق R3 و R6 که هم سطح دامنه مربوطه است قرار می دهد.

شبیه ساز ضربان قلب بیمار ایرکاس

هنگامی که یک دنباله به پایان رسید شیفت ثبات یا رجیستر متوقف می شود. خروجی ۹ (pin11) با EN- ورودی (pin13) متصل می شود.

تنها زمانی که یک پالس مجدد به شمارنده (pin15) می رسد شمارنده دوباره شروع می شود. این شروع دوباره نیز توسط IC1 ایجاد شده است. زیرا علاوه بر سیگنال ۱۶ هرتز برای راه اندازی IC همچنین یک سیگنال ۱ هرتز و ۰٫۵ هرتز در pin14 و pin13 که مرتبط با نرخ ضربان قلب) ۶۰و۱۲۰ (سوئیچ۲)را ایجاد می کند.

بنابراین سیگنال مربعی به یک پالس سوزنی مثبت تبدیل می شود. این کار توسط ترکیبی از المان های C6، R11، D4، R10 انجام می شود. از آنجا که این پالس زودتر یا دیرتر می آید (۰٫۵ هرتز یا ۱ هرتز( فقط در طول دوره U کوتاه تر یا بلند تر است و تاثیری در شکل موج PQRST ندارد. ال ای دی کوچک D3 با مقاومت R5 به خروجی ۳ (IC2 ,Pin7) و در طول هر دوره بر روی R چشمک می زند. ترکیب مقامت های پایانی مدار R12-R15 سیگنال بایپلار را از برد الکترونیکی در خروجی به سه سیگنال قطبی مورد نیاز تبدیل می کند

توجه:

این مدار برای دستگاه های الکترونیکی زیادی طراحی شده است و تمامی قطعات را می توان از روی برد های قدیمی الکترونیکی و یا از فروشگاه الکترونیکی تهیه کرد. اما اگر در پیدا کردن کریستال ساعت به مشکل برخورد کردید می توانید از کریستال ۴٫۴۳ مگاهرتز به جای کریستال ۴٫۱۹۴۳ مگاهرتز که در تلویزیون ها هم به کار برده شده استفاده کنید.سیگنال خروجی با این کریستال نیز خوب می باشد اما ضربان قلب به ۶۳ و ۱۲۷ ضربه در دقیقه تغییر خواهد کرد.

شبیه ساز قلب انسان

www.ircas.ir برد ساخت شبیه ساز قلب 1

قطعات مورد نیاز برای ساخت شبیه ساز ECG :

برای ساخت شبیه ساز ECG می توان از قطعات الکترونیکی زیر استفاده کرد.

R1 = 4K7
R2, R8 = 1M
R3, R4, R9, R10, R11, R12, R13 = 100K
R5 = 1K
R6, R7 = 470K
R14, R15 = 220
C1 = 22 p
C2 = 82 p
C3, C4, C5, C6 = 220n
IC1 = HEF4521B
IC2 = HCC/HCF4017B
D1, D2, D4 = 1N4148
cristal = 4.1943 Mhz
D3 = LED 3 mm
۲x IC sockets 16 pin

شماتیکی از اولین طراحی وساخت شبیه ساز ECG

ساخت شبیه ساز ECG www.ircas.ir آموزش ساخت شبیه ساز ECG

شماتیکی ثانویه از طراحی وساخت شبیه ساز ECG

طراحی وساخت شبیه ساز ECG کنسرسیوم ایرکاس

آموزش طراحی وساخت شبیه ساز ECG 2

طراحی وساخت شبیه ساز ECG برد

 

ترمیم بافت ستخوان با نانو www.ircas.ir

ترمیم بافت استخوان با فناوری نانو در البرز

ترميم بافت استخوان با فناوری نانو در البرز کنسرسیوم ایرکاس WWW.IRCAS.IR

محققان ایرانی موفق به ترمیم بافت استخوانی با نانو بیوسرامیک‌های نوین شدند.

عضو هیأت علمی پژوهشگاه مواد و انرژی گفت: با همکاری مرکز تحقیقاتی درمانی ناباروری دانشگاه علوم پزشکی یزد به بررسی ترمیم بافت استخوان آسیب دیده در موش صحرایی با بیوسرامیک نانوساختاری بر پایه کلسیم منیزیم سیلیکات (مرونیت) و مقایسه آن با پودر هیدروکسی آپاتیت تجاری پرداختیم که مهم‌ترین کاربرد این طرح در صنایع پزشکی و مهندسی پزشکی خواهد بود.

«علی حافظی» افزود: بیوسرامیک‌های فسفات کلسیم، به‌ویژه پودرهیدروکسی آپاتیت (HA)، به دلیل شباهت زیاد به ترکیب معدنی موجود دربافت‌های سخت، به‌طورگسترده به‌عنوان ایمپلنت استخوان مورد استفاده قرارمی‌گیرد؛ با این حال، محدودیت‌هایی نظیر مقاومت فشاری و تافنس شکست پایین کاربردهای گسترده‌تر آن را برای ترمیم بافت استخوان محدود کرده است.
وی اضافه کرد: درسال‌های اخیر، مرونیت به دلیل افزایش تکثیر سلولی بیشتر و خواص مکانیکی بهتر توجه بسیاری از محققان را به خود جلب کرده است.
همچنین مطالعات انجام شده نشان داده است که استئوبلاست‌ها (سلول‌های استخوان‌ساز) فعالیت‌ تکثیری بهتری روی مرونیت نسبت به HA از خود نشان می‌دهند.
عضو هیأت علمی پژوهشگاه مواد و انرژی و محقق این طرح در این باره اظهارکرد: در این کارتحقیقاتی که در ادامه پایان‌نامه دکترای من ومنتج از طرح پژوهشی مشترک با مرکز تحقیقاتی درمانی ناباروری دانشگاه علوم پزشکی یزد بود، ما به دنبال بررسی میزان استخوان‌سازی ترکیبی برپایه کلسیم منیزیم سیلیکات یا همان مرونیت و مقایسه نتایج آن با پودر هیدروکسی آپاتیت که در ترمیم استخوان متداول است، بودیم.
حافظی درمورد مراحل انجام این تحقیقات تصریح کرد: درابتدا مرونیت به روش سل ‌ـ ژل سنتزشد و خواص فیزیکی آن مورد ارزیابی قرار گرفت؛ سپس با انتخاب ۲۴ موش صحرایی ۳ تا ۴ ماهه با وزن مشخص و تقسیم آنها به ۳ گروه ۸ تایی حفره‌هایی در استخوان ران آنها ایجاد شد.
وی ادامه داد: در ادامه در یک گروه این حفره‌ها با پودرمرونیت و درگروهی دیگر با پودر هیدروکسی آپاتیت پرشد؛ گروه آخرهم بدون این‌که حفره با ماده‌ای پرشود، به‌عنوان گروه کنترل انتخاب شد سپس با گذشت زمان ۲ و ۸ هفته مطالعات هیستولوژیکی روی این گروه‌ها صورت گرفت و به مقایسه نتایج به دست آمده پرداخته شد.
محقق این طرح افزود: نتایج نشان داد که استخوان‌سازی و رگ‌زایی مرونیت درمحدوده گسترده‌ترو با سرعت بیشتری در مقایسه با گروه‌های دیگر ایجاد شد چرا که فعالیت استئوبلاست‌ها روی مرونیت نانوساختار درمقایسه با هیدروکسی آپاتیت میکرونی افزایش قابل ملاحظه‌ای داشت. این محقق ادامه داد: بنابراین با انجام بررسی‌های تکمیلی می‌توان به کاربرد این ماده به‌عنوان جایگزین مناسب استخوان با قابلیت رگ‌زایی و افزایش فعالیت سلولی امیدوار بود. به گفته حافظی، وی و همکارانش در ادامه این طرح به دنبال ساخت داربست‌هایی از کامپوزیت‌های این ماده به همراه پلیمرهای زیست سازگار هستند.

موفقیتی دیگر در مسیر ترمیم بافتهای استخوانی با فناوری نانو

بافت استخوان www.ircas.ir

محققان دانشگاه شیراز در پژوهشی آزمایشگاهی، نانوکامپوزیت‌ پروتئینی را تولید کرده‌اند که می‌توان از آن به‌منظور ترمیم بافت‌های استخوانی استفاده کرد.

سادات شجاعی، مجری طرح اظهار کرد: مهندسی بافت علمی است که با به کارگیری روش‌های نوین به تولید بافت‌های بدن به‌منظور ترمیم آسیب‌دیدگی آن‌ها می‌پردازد. بدین صورت که با ساخت داربست‌های سه‌بعدی به شکل بافت‌های مختلف بدن و اعمال سلول‌های قابل رشد درون آن‌ها، زمینه‌ رشد سلول‌ها در محیط بدن را فراهم می‌آورند. ترمیم بافت‌های استخوانی یکی از مهم‌ترین شاخه‌های این علم بشمار می‌رود که تا کنون تحقیقات گسترده‌ای در این زمینه انجام‌ شده است.

وی با اشاره به گام‌های مهم برداشته شده به‌سوی استفاده از مهندسی بافت جهت درمان آسیب‌های شدید اسکلتی به‌ صورت کلینیکی گفت: هدف از انجام این طرح، تولید و معرفی یک داربست استخوانی است که عملکرد آن از نقطه نظرهای خواص مکانیکی، زیست سازگاری، زیست فعالی و قابلیت بازسازی استخوان نسبت به نمونه‌های مشابه بهبود یافته است.

مجری طرح در رابطه با خصوصیات برتر این داربست استخوانی نانوکامپوزیتی افزود: ساختار جدید معرفی شده در طرح حاضر، قابلیت این را دارد که تعداد بسیار بیشتری از سلول‌های استخوانی را در حجم کم جای دهد. به‌علاوه که خواص مکانیکی داربست‌های سنتی را نیز داراست. بر همین اساس، از کارایی بیشتری برای بازتولید بافت طبیعی استخوان برخوردار است.

وی با تاکید بر این‌که برخی از خواص مکانیکی و زیستی این نانوکامپوزیت‌ها در مقایسه با نمونه‌های مشابه بهینه شده است، تصریح کرد: هیدروژل‌های پروتئینی به دلیل خواص مکانیکی بسیار ضعیف عموماً تنها برای ترمیم بافت‌های نرم مورد توجه هستند. با این حال این مواد خواص بی‌نظیری از قبیل برهمکنش عالی با سلول‌ها و توانایی کپسوله کردن تعداد بسیار زیادی سلول را در حجم کم دارا هستند. نتیجه‌ حاصل از این طرح یک داربست سه‌بعدی نانوکامپوزیتی متشکل از نانوذرات استخوانی، هیدروژل پروتئینی و نانوالیاف پلیمری است. در واقع نانوالیاف کامپوزیتی پلیمری نقش استحکام‌بخشی مکانیکی را ایفا کرده و هیدروژل پروتئینی خواص زیستی داربست را تأمین می‌کند.

دکتر سادات شجاعی درباره روند دستیابی به اهداف مورد نظر این پژوهش گفت: ابتدا نانوذرات استخوانی (هیدروکسی آپاتیت) با قابلیت زیست سازگاری و زیست فعالی بالا با روشی بهینه سنتز شدند تا بتوان از آن‌ها برای ساخت داربستی زیست فعال استفاده کرد. در ادامه یک هیدروژل پروتئینی با روش‌های شیمیایی خاص اصلاح شد، تا قابلیت ایجاد پیوندهای عرضی در مولکول‌های پروتئین ایجاد شود. همچنین برای شبیه‌سازی هر چه بیشتر داربست استخوانی به ECM طبیعی انسان، با به‌کارگیری روش الکتروریسی، یک لایه نانوکامپوزیتی الکتروریس شده از یک پلی‌استر و نانوذرات استخوانی تهیه شد. در نهایت یک قطعه‌ سه‌بعدی پیچیده‌ متشکل از هیدروژل پروتئینی اصلاح شده، نانوذرات استخوانی و لایه‌ نانوکامپوزیتی الکتروریس شده تولید شد و آزمون‌های مربوطه جهت ارزیابی عملکرد این قطعه صورت گرفت.

مجری طرح خاطرنشان کرد: بر اساس نتایج تحلیل‌های سلولی، سلول‌های استخوانی به مرور زمان تشکیل یک شبکه سه‌بعدی را در سرتاسر ساختار کامپوزیتی می‌دهند که نتیجه‌ مستقیم آن تسریع در روند بهبود استخوان آسیب دیده خواهد بود. به‌علاوه، به دلیل حضور نانوذرات زیست فعال توزیع شده در لایه‌های داربست، ایجاد جوانه‌های استخوانی در زمانی کوتاه میسر شده است.

نتایج این تحقیقات که حاصل تلاش‌های دکتر مهدی سادات شجاعی، عضو هیأت علمی دانشگاه شیراز و دکتر محمدتقی خراسانی و دکتر احمد جمشیدی از اعضای هیأت علمی پژوهشگاه پلیمر است، در مجله‌ Chemical Engineering منتشر شده است.

در دانشگاه علوم پزشکی تهران؛

استخوان آسیب دیده با فناوری نانو ترمیم می شود

بافت استخوانی و ترمیم آن

محققان دانشگاه علوم پزشکی تهران با همکاری پژوهشگران دانشگاه صنعتی بابل موفق به ساخت نانوکامپوزیت هایی شدند که می تواند استخوان آسیب دیده را ترمیم کند.

به نقل از ستاد ویژه توسعه فناوری نانو،بازسازی بافت استخوان معیوب و عوارض مربوط به عمل جراحی همچون عفونت محل شکستگی، از نگرانی‌های عمده در جراحی ارتوپدی است. از این رو، توسعه‌کامپوزیت‌های ضدباکتریایی به منظور بهبود فرایند استخوان‌سازی اهمیت بالایی دارد.  

دکتر شیما توکل، یکی از مجریان طرح «طراحی و ساخت نانو کامپوزیت هایضد باکتری برای ترمیم استخوان» گفت:در این مطالعه دو گونه‌ نانوکامپوزیت مختلف به منظور ترمیم استخوان و کاهش عفونت در محل ضایعه طراحی شدند. مواد استفاده شده در این کامپوزیت‌ها در مقادیر معین، کاملاغیرسمی و سازگار با بدن هستند واز طرفی قیمت تمام شده‌نانوکامپوزیت هم پایین و مقرون به صرفه است.

وی ادامه داد:در این طرح نانوکامپوزیت هیدروکسی آپاتیت-کیتوسان حاوی نانوذرات نقره و سیلیسیوم توسط یک روش هیبریدیزاسیون مولکولی آماده شد.

به گفته وی، هدف از این کار نشان دادن اثر اندازه، زبری سطح و ساختار شیمیایی نانوکامپوزیت‌های ذکر شده در سمیت سلولی و فعالیت ضدباکتری بر سلول‌های استخوان‌ساز (استئوبلاست) انسان و باکتری اشرشیاکولی بود.

وی افزود: نتایج نشان داده که نانوکامپوزیت حاوی نانوذرات نقره نسبت به نانوکامپوزیت حاوی سیلیسیوم، درصد زنده بودن سلول و فعالیت ضدباکتری بالاتری را القا می‌کنند.

به گفته‌ توکل، ادغام نانوذرات نقره با نانوکامپوزیت، مانع از انتشار سریع یون‌های نقره شده و پتانسیل ایجاد سمیت در سلول‌ها را محدود می‌کند. در نتیجه، توان بازسازی بالای استخوان نانوکامپوزیت نقره و زیست سازگاری خوب و همچنین فعالیت ضدباکتری مناسب، آن را به گزینه‌مناسبی به عنوان پرکننده در محل شکستگی استخوان آسیب دیده تبدیل می‌ کند.

وی خاطرنشان کرد: با تکمیل مطالعات در استفاده از این نتایج و تولید انبوه این ماده، می‌توان از طریق جلوگیری از مشکلات مربوط به عفونت استخوانی و تسریع روند ترمیم استخوان، به کاهش هزینه‌های وارد شده بر سیستم سلامت کشور کمک کرد.

توکل نحوه‌ساخت و بررسی این نانوکامپوزیت‌ها گفت: در این مطالعه، نانوذرات نقره و یا پلی دی میتیل سیلوکسان به ترکیب بهینه‌کیتوسان- نانوهیدروکسی آپاتیت اضافه شد و اجازه داده شد تا ترکیب کامپوزیتی بصورت درجا ساخته شود. اندازه ذرات، زبری سطح، تولید اکسیژن واکنش پذیر و زیست فعالی نانوکامپوزیت‌ها توسط پراش اشعه X، میکروسکوپ نیروی اتمی، روش DPPH و طیف سنجی مرئی UV-SEM، مورد مطالعه قرار گرفت.

وی عنوان کرد: آزمون شمارش کلنی‌های باکتریایی، آزمون MTT و آزادسازی لاکتات دهیدروژناز (LDH) نیز به عنوان آزمایش فعالیت ضد باکتری و زیست سازگاری انجام شد.

بر اساس اعلام ستاد نانو، مطالعات نشان داده‌اند که درکنار خاصیت ضد باکتریایی نانونقره، نانونقره خاصیت ترمیم کنندگی استخوان را نیز دارد. همچنین این نانوکامپوزیت اگرچه خاصیت ضدباکتریایی خوبی نشان می‌دهد، اما بر روی سلول‌های یوکاریوت(مثل سلول پستانداران و جانورانی بغیر از باکتری و ...) اثرات صدمه زننده‌ای ندارد. در نتیجه می‌توان چنین فرض کرد که این نانوکامپوزیت می‌تواند منجر به ترمیم استخوان و جلوگیری از عفونت در محل ضایعه‌استخوانی شود. البته برای بررسی این فرضیه باید مطالعات بیشتری صورت بپذیرد.

این نانوکامپوزیت زیست سازگار و حاوی نانوذرات ضد باکتری است و در بررسی‌های آزمایشگاهی قادر به جلوگیری از رشد باکتری و بخش دیگر نانوکامپوزیتی آن قادر به بازسازی استخوان در محل آسیب دیده بوده است.  

این مطالعات حاصل تلاش‌های دکتر شیما توکل، دکتر سید مهدی رضایت، دکتر محسن جهانشاهی- عضو هیات علمی دانشگاه صنعتی بابل و مهندس محمدرضا نیک پور است. نتایج این کار در مجله

 Journal of Nanoparticle Research)جلد ۱۶، شماره ۱، سال ۲۰۱۴، صفحات ۱-۲۶۲۲ تا ۱۳-۲۶۲۲) به چاپ رسیده است.

دستاورد محققان کشور در ترمیم استخوان با نانو داربست مرجانی

ترمیم استخوان فناوری نانو

محققان دانشگاه صنعتی امیرکبیر با استفاده از ترکیب مرجان دریایی در بستر پلیمری نانولیفی داربست‌­هایی را عرضه کردند که قادر است در کمتر از 3 ماه بافت یکپارچه استخوانی را تولید کند.

فاطمه حجازی محقق طرح با بیان این که در این تحقیقات داربست‌های نانولیفی برای ترمیم بافت استخوان تولید کردیم، گفت: داربست‌های نانو لیفی به دلیل شباهت ساختاری به ماتریس برون سلولی طبیعی بدن، بسیار مناسب برای رشد و تکثیر سلول‌ها است.

وی با بیان این که در صورت طراحی سه­بعدی این داربست‌های نانولیفی سلول‌ها می­‌توانند در یک محیط سه بعدی رشد کرده و عملکردهای طبیعی خود را بیان کنند، اظهار کرد: از این رو در این مطالعات ما از ساختارهای سه بعدی نانو لیفی بهره بردیم تا با ترغیب سلول‌ها به رشد، تکثیر و تمایزات استئوژنیک، بازسازی بافت استخوان را ارتقاء بخشیده و ترمیم آسیب استخوانی را تسریع بخشیم.

محقق طرح با تاکید بر این که در این پروژه از روش الکتروریسی اصلاح شده استفاده کردیم، خاطرنشان کرد: با استفاده از این روش توانستیم داربست‌های نانو لیفی سه بعدی و ضخیم تولید کنیم تا امکان استفاده از آنها برای هر نوع آسیبی با هر ابعادی فراهم شود.

وی از کاربرد مرجان دریایی در این داربست­ها برای اولین بار خبر داد و یادآور شد: در کنار فاز پلیمری داربست از مرجان دریایی استفاده شد؛ چرا که مرجان‌ها به دلیل ساختار ویژه خود خواص استخوان سازی شدیدی در داربست ایجاد می‌­کند که این امر به بازسازی استخوان آسیب دیده کمک می­‌کند.

حجازی با تاکید بر این که در این طرح از مزایای ساختارهای پلیمری نانولیفی همراه با خواص استئوژنیک مرجان دریایی برای ترمیم نقص­های استخوانی بهره جستیم، توضیح داد: استفاده در زمینه­‌های پزشکی و به میزان بسیار کم از مرجان‌های دریایی خلیج فارس دریچه جدیدی در استفاده بهینه از این منبع ملی می­‌گشاید.

این محقق دانشگاه صنعتی امیرکبیر اضافه کرد: داربست­‌های تهیه شده از خواص مکانیکی بالایی برخوردارند و تا زمان ترمیم بافت استخوان قادر به تحمل بارهای وارده هستند.

وی ادامه داد: مطالعات سلولی برون تنی (In Vitro) نشان دادند که این داربست‌ها هیچ سمیتی برای بدن ایجاد نکرده و بستر مناسبی برای رشد و تکثیر و تمایز سلول‌ها بودند. به علاوه، مطالعات درون تنی (In Vivo) از حضور این داربست­ها در نقیصه جمجمه‌­ای مدل حیوانی موش صحرایی حاکی از شکل­‌گیری بافت کامل و یکپارچه استخوان در کمتر از 3 ماه بود.

كاهش ۵۰ درصدی زمان ترميم بافتهای استخوانی با فناوری نانو

فناوری نانو بافت استخوان ترمیم کنسرسیوم ایرکاس

محقق دانشگاه امیرکبیر موفق به ساخت سامانه نانوکامپوزیتی به منظور رهایش کنترل شده داروی پوکی استخوان، کاهش عوارض دارویی و كاهش ۵۰ درصدی زمان بهبود و ترميم بافتهای آسيب ديده استخوانی شد.

سید محسن رضوی نیا، دانش آموخته کارشناسی ارشد دانشکده مهندسی پزشکی دانشگاه صنعتی امیرکبیر از سال۱۳۹۰کار بر روی ساخت سامانه نانوکامپوزیتی LDH/Gelatin (هیدروکسید دو گانه لایه ای / ژلاتین) را آغاز کرد تا از طریق آن به فرآیند رهاسازی کنترل شده داروی آلدرونیک اسید برای تسریع در درمان بافت استخوانهای آسیب دیده و پوکی استخوان دسترسی پیدا كند.

وی با بیان اینكه سامانه دارو رسان به بافتهای آسیب دیده استخوانی در این طرحبه صورت ایمپلنت (كاشتنی) ساخته شده است، افزود:ماده LDH در دنیا ساخته می شود اما خصوصیات ماده ای كهتولید كردیم، منحصر به فرد است و با روش سنتزی جدیدی برایاولین بار در دنیا بع نتیجه رسیده است.

وی با بیان اینکه ماده پایه حامل این سامانه كه هیدروكسید دوگانه لایه ای است و كاربردهای متعددی دارد،گفت: به این ترتیبآنیونی که بین لایه ها قرار گرفته را با استفاده از تكنیكهای خاص،از میان لایه های ساختاری ماده خارج و دارو را جایگزین آن كرده ایم.

رضوی نیا ادامه داد: لایه های ماده حامل در این سامانه دارو رسان، در شرایط اسیدی از هم باز می شود و آنیون بین آنها آزاد خواهد شد که ما از همین خاصیتدر pH  و دمای خاصاستفاده كردیم تا دارو در محلی كه مدنظر ماست آزاد شود. بنابراین زمان رهایش و تخریب این سامانه كاملا تحت كنترل ما خواهد بود.

وی خاطرنشان كرد: خاصیت دیگر این ماده موجب می شود كه به محض قرار گرفتن در محیط بازی، آنیون موجود در اطراف را جذب كرده و به ساختار اولیه برگردد از این رو دیگر بافتهای سالم بدن را تحت تاثیر قرار نمی دهد.

وی هدف نهایی از طرح تحقیقاتی خود را كاهش مضرات و اثرات جانبی داروهای ضد سرطانی عنوان كرد و گفت: در حال حاضر داروهای ضد سرطان و به ویژه شیوه های شیمی درمانی به گونه ای است كه تمام سیستم بدن را تحت تاثیر قرار می دهد و علاوه بر نقاط سرطانی، بافت های سالم بدن را نیز متاثر می سازد كه عوارض جانبی زیادی برای بیماران به دنبال دارد.

رضوی نیا كاهش عوارض مصرف دارو را از مزایای سامانه دارو رسان ذكر كرد و افزود: ماده LDH تولید شده كاملا زیست سازگار است و با استخوان سازگاری دارد. همچنین این ماده موجب افزایش و تسریع در رشد و بازسازی بافتهای استخوانی می شود.

وی درباره نقش این دارو رسان نانو كامپوزیتی در كاهش عوارض مصرف داروهای ضد سرطان گفت: هنگام مصرف داروهای ضد سرطان، در روزهای اولیه مقدار زیادی از دارو در بدن بیمار آزاد می شود كه مطلوب ما نیست و باید به تدریج به دوز خاصی برسد و در محدوده معینی عمل كند.

وی ادامه داد: با كاشتن این سامانه دارو رسان در موضع سرطانی، علاوه بر کاهش مصرف دارو می توان رهایش آن را كنترل كرد كه در چه مدت زمانی، چه مقدار دارو آزاد شود.

وی با بیان اینكه سامانه دارو رسان نانوكامپوزیتی، مراحل تست آزمایشگاهی و تست حیوانی بر روی موش و خرگوش را با موفقیت پشت سر گذرانده است، گفت: تست انسانی در مرحله بعدی قرار دارد تا برای مبتلایان به پوكی یا شكستگی استخوان و همچنین سرطان استخوان مورد استفاده قرار گیرد.

رضوی نیا تصریح كرد: با توجه به ویژگی زیست تخریب پذیری و امكان كنترل كامل این ماده، بعد از انجام ماموریت می توان بدون آسیب به بافت بدن، آن را تخریب كرد در صورتیکه هیچ زیانی به بیمار نرسد.

تکنیک جدید ساخت داربست متخلخل جهت ترمیم بافت استخوان

داربست استخوانی

نوعی داربست متخلخل از جنس ژلاتین/نانو هیدروکسی آپاتیت جهت ترمیم بافت استخوان به دست پژوهشگران ایرانی ‏طراحی و ساخته شد. تکنیک ترکیبی ساخت داربست استفاده شده در این تحقیقات منجر به به‌دست آوردن نوعی ساختار ‏متخلخل مناسب برای داربست بافت استخوان می‌شود.‏ این تحقیق در محدوده دانش مهندسی بافت که هدف آن بازسازی و ترمیم بافت‌های از دست رفته است، تعریف شده بود. ‏هر سیستم مهندسی بافت شامل سه جزء اصلی داربست، سلول و فاکتور رشد است. در این پروژه، هدف طراحی و ساخت نوعی ‏داربست مناسب جهت ترمیم بافت استخوان از جنس ژلاتین و نانوذرات هیدروکسی آپاتیت بوده است.‏ در ساخت این داربست از نانوذرات هیدروکسی آپاتیت در زمینه ژلاتین استفاده شده است. استفاده از این نانوذرات به دلیل سطح آزاد ویژه ‏بسیار بالایی که از ذرات نانو سراغ داریم از چند جهت باعث بهبود خصوصیات داربست مربوطه می‌گردد. از نظر مهندسی کامپوزیت تقویت ‏شونده با نانوذرات یاد شده، پتانسیل تقویت کنندگی داشته و با توجه به خصوصیات بیولوژیکی شناخته شده از هیدروکسی آپاتیت در زمینه ‏قابلیت هدایت و رشد استخوان، کاهش سایز ذرات تا ابعاد نانو باعث افزایش این خاصیت از این ماده در ساختار نانوکامپوزیتی داربست مذکور ‏می‌شود.‏ دکتر محمود اعظمی، استادیار گروه مهندسی بافت دانشکده فناوری‌های نوین پزشکی دانشگاه علوم پزشکی تهران، مراحل این تحقیقات را ‏این گونه شرح داد: «در مرحله اول به طراحی و ساخت داربست مناسب پرداخته شد. در این قسمت با بهره‌گیری از ترکیب روش‌های ‏ریخته‌گری حلال و فریزدراینگ و نهایتاً لایه چینی نوعی داربست متخلخل با ساختار مناسب جهت رشد استخوان تهیه گردید و سپس با ‏آزمون‌های غیر بیولوژیکی و با استفاده از روش‌های متداول مشخصه‌یابی مواد داربست ساخته شده مورد بررسی قرار گرفت. به منظور بررسی ‏خصوصیات بیولوژیکی نظیر زیست سازگاری داربست ساخته شده و همچنین پتانسیل آن در القای رشد و تکثیر سلول‌های استخوانی آزمون‌های ‏بیولوژیکی برون تن (‏in vitro‏) انجام گردید. آزمون‌های درون تن نیز در مدل حیوانی موش و در ناحیه کالواریا به منظور بررسی قابلیت ترمیم ‏بافت استخوان بواسطه حضور این داربست در محل ضایعه مورد بررسی قرار گرفت.»‏ تکنیک ترکیبی ساخت داربست استفاده شده در این تحقیقات منجر به به‌دست آوردن نوعی ساختار متخلخل مناسب برای ‏داربست می‌گردد. به گفته اعظمی بعد از این مقاله تحقیقات بیشتر در راستای سنجش درون تن محصول ساخته در مدل‌های ‏حیوانی بزرگتر نظیر خرگوش انجام شده است و در صورت امکان باید بر روی مدل‌های حیوانی بزرگتر یا انسان مورد بررسی قرار ‏گیرد. در صورت تایید این محصول در این آزمایشات و آزمایشات پیشرفته‌تر، این محصول ارائه شده در این تحقیقات قابلیت ‏ترمیم استخوان‌های کوچک از دست رفته ناشی از بیماری، تصادف و... در انسان را خواهد داشت.‏ این کار تحقیقاتی تاکنون منجر به سه مقاله علمی در مجلات معتبر و ثبت اختراع در داخل کشور شده است. یکی از ‏نتایج اخیر این کار تحقیقاتی که به دست دکتر محمود اعظمی و همکاران وی صورت گرفته است، درمجله
Journal of biomaterials science ,polymer edition
‏ (ژوئن 2012) منتشر شده است. ‏

این خبر در نشریه ماهنامه فناوری نانو شماره 193در تاریخ 1392/08/15 به چاپ رسیده است.

اندازه گيري ضربان و فشار خون بر اساس متد MMSB

اندازه گيري ضربان و فشار خون بر اساس متد MMSB

این مقاله روش تازه ای را در اندازه گیری ضربان و فشار خون به صورت پیوسته ارائه می کند. در این روش میدان مغناطیسی یکنواختی به صورت غیر تهاجمی در نزدیکی شریان خون رادیال بر روی پوست اعمال می کنیم و تغییراتی را که در میدان مغناطیسی اعمالی بر اثر حرکت ضربان دار خون ایجاد می شود، اندازه گیری کرده و بیوسیگنال های MMSB را می یابیم. با استخراج اطلاعات از سیگنال MMSB می توان ضربان قلب را اندازه گیری کرد. همچنین با داشتن سیگنال ECG که از فعالیت های الکتریکی قلب به دست می آید می توان زمان گذرای پالس (PTT) را اندازه گیری کرد و فشار خون را به دست آورد.

با پیشرفت علم بیوالکتریک، دستگاه های نظارت بر سلامتی که می تواند نظارت مداومی از وضعیت سلامتی یک فرد را همراه با استفاده آسان و راحتی کامل فراهم کند در حال متداول شدن است. از میان علائم حیاتی فیزیولوژیکی، ضربان قلب و فشار خون دو پارامتر متداول هستند که اغلب توسط دستگاه ها مورد بررسی قرار می گیرند و می توانند نشان دهنده عملکرد صحیح قلب باشند.

روش ها و فناوری هایی که برای به دست آوردن ضربان قلب و نظارت بر فشار خون وجود دارد، عموما می توان به اقسام الکتریکی، نوری، مایکرویو، صوتی، مکانیکی و مغناطیسی طبفه بندی کرد. اندازه گیری غیر تهاجمی فشار خون (BP) با استفاده از روش کاف، اطلاعات کافی را برای بیشتر استفاده های پزشکی فراهم می سازد. با این حال، روش های اندازه گیری بر پایه کاف، دارای معایبی نیز است که کاربرد آن ها را در برخی شرایط پزشکی محدود می سازد.

اندازه گیری طولانی مدت و پیوسته از فشار خون با استفاده از کاف امکان پذیرنیست.

بین هر دو اندازه گیری که با کاف انجام شود، توقفی در حدود ۱تا ۲دقیقه لازم است تا بافت محل اندازه گیری به حالت اولیه خود برگشته و اندازه گیری قابل اطمینان شود.

تورم ناشی از کاف ممکن است بیماران را اذیت کند و در بعضی از افراد که دارای بیماری های پوستی باشند این روش امکان پذیر نباشد.

خون مرتبط است و مي تواند به عنوان مرجعي براي تخمينات فشار خون (BP) استفاده شود. (زمان گذراي پالس PTT، زمان گرفته شده ضربان فشارخون شرياني از دريچه آئورت قلب تا محل مناسبي از قلب است، معمولا انگشت). اندازه گيري مرسوم PTT با استفاده از اختلاف زماني که بين پيک شکل موج از الکتروکارديوگرام (ECG) و حداکثر شيب شکل موج پلتسيموگراف نوري (PPG) است که از انگشت سبابه گرفته مي شود. با اين حال روش PPG انگشتي به اتصال نوري پيوسته با پوست نياز دارد و محدوديتي براي فعاليت هاي روزانه فرد بيمار محسوب مي شود. در اين مقاله براي به دست آوردن سيگنال هاي ضربان خون، به جاي روش مرسوم PPG انگشتي، از سيستم اندازه گيري ضربان و فشار خون بر اساس متد MMSB = Modulated magnetic signature of blood)   MMSB) استفاده مي کنيم. اين روش در کنفرانس بين المللي مهندسي پزشکي (IGBME) ارائه شده است. در شکل(۱) چگونگي اين روش شرح داده شده است.

چکونگی قرار گیری سنسور و آهنربا بر روی شریان

در اين روش يک آهن رباي مغناطيسي دائم يا الکتريکي و يک سنسور مغناطيسي را در نزديکي هم بر روي شريان اصلي قرار مي دهيم و تغييرات ايجاد شده در ميدان مغناطيسي را که توسط حرکت ضربات دار جريان خون ايجاد مي شود توسط سنسور مغناطيسي اندازه گيري مي کنيم. علت تغيير در اين ميدان مغناطيسي يکنواخت، سنسور مغناطيسي، پوست و شريان خوني را دربر مي گيرد. براي توليد ميدان مغناطيسي يکنواخت که براي باياس سنسور هم ضروري است، ميتوان از يک آهن رباي دائمي يا الکتريکي استفاده کرد. با استفاده از ديتاشيتي که براي آهن ربا تهيه شده است، مشخصات فيزيکي آهن ربا داراي قطري به اندازه ۶ميليمتر و ضخامتي در حدود ۲ميليمتر است. شدت ميدان مغناطيسي برابر ۲/۰تسلا و ضريب نفوذپذيري مغناطيسي نسبي آهنربا (µr)، برابر H/M 103×۵است. در شکل زير ميتوانيد شکل فيزيکي و خصوصيات آهنربا را مشاهده کنيد.

چگونگی ایجاد میدان مغناطیسی توسط آهنربا

براي باياس کردن سنسور GMR

جنس: نئوديوم آهن بور

براي تشخيص ضربان خون در اين مقاله از سنسور مگنتورزيستيو GMR به شماره AAH02-02 استفاده کرده ايم. سنسورهاي مگنتو رزيستيو، همان طور که از نام آن بر مي آيد، با تغيير ميدان مغناطيسي در مجاورت آن ها، مقاومت الکتريکي اين گونه از سنسورها تغيير مي کند و ولتاژي را در خروجي خود توليد مي کنند. در شکل ۴پايه هاي خروجي اين سنسور از شرکت NVE به مدل AAXXX-02 نشان داده شده است. همچنين شکل۵بلوک دياگرام اين قطعه را نشان مي دهد.

سنسور

در شکل زير نحوه عملکرد سنسور GMR را در ميدان هاي مغناطيسي متفاوت مشاهده مي کنيد.

همان طور که در شکل ۶مشخص است مي توان با اعمال ميدان مغناطيسي اعمالي مناسب پاسخ خروجي سنسور را در محدوده خطي قرار داد. براي کار در ناحيه خطي سنسور، بايد ديتاشيت سنسور مورد نظر را يافته و محدوده آن را بيابيم. به طور مثال سنسور GMR AAH002-02 شرکت NVE داراي ناحيه خطي در حدود ۶/۰تا ۳گوس است.

پاسخ غیر خطی سنسور

آهن رباي استفاده شده در اين مقاله داراي شدت ميدان مغناطيسي ۲/۰تسلا است (۱تسلا برابر ۱۰۰۰۰گوس است) که اين شدت ميدان براي باياسکردن سنسور GMR بسيار زياد است. براي اين منظور سنسور را در فاصلهاي از آهن ربا قرار مي دهيم تا تاثير ميدان مغناطيسي بر سنسور کاهش يابد. بنابراين با قراردادن آهن ربا در فاصله هاي متفاوتي از سنسور مي توان ميدان مغناطيسي اعمالي بر سنسور را کاهش و يا افزايش داد. براي به دست آوردن ميدان مغناطيسي اعمالي از سوي آهن ربا مي توان از معادله زير استفاده کرد.

کنسرسیوم ایرکاس

با در نظر گرفتن شدت ميدان مغناطيسي در حدودB=2/8 گوس، فاصله d در حدود ۲۵mm به دست مي آيد. اين مقدار از تاثيرات ميدان مغناطيسي باعث باياس شدن مطلوب سنسور GMR مي شود به طوري که عملکرد سنسور هميشه در ناحيه خطي قرار گيرد. در شکل ۷چگونگي قرار گيري سنسور و آهن ربا در فاصله مربوطه نشان داده شده است.

سنسور و آهن رباi

دستگاه گردش خون

نمونه هايي از اين نواحي که سيگنال MMSB مي تواند به راحتي به دست آيد شامل مچ دست، مچ پا، گردن و نواحي اطراف پيشاني هستند. در اين مقاله ما شريان راديال مچ دست را براي گرفتن سيگنال هاي MMSBانتخاب کرده ايم.

ecg mmsb کنسرسیوم ایرکاسi

نحوه اندازه گیری PTT

اندازه گيري انجام شده نشان مي دهد که اختلاف بين دو متد موجود بسيار ناچيز است. بنابراين با قطعيت مي توان گفت که روش تازه MMSB يک روش جايگزين عملي بر روش هاي موجود در اندازه گيري ضربان قلب است. اين روش بدون نياز به اتصالات الکتريکي و نوري بر روي پوست، اندازه گيري قابل اطميناني را در به دست آوردن ضربان قلب ارائه مي کند.اندازه گيري فشار خون با استفاده از زمان گذراي پالس PTT ؛ روش PTT اخيرا به عنوان روشي پيوسته، بدون کاف و غيرهجومي براي تخمينات فشار خون پيشنهاد شده است. زمان PTT توسط دو متد متفاوت (به طور معمول ECG و PPG) قابل اندازه گيري است که با سنجش زمان تاخير در انتشار ضربان خون در دو ناحيه شرياني از بدن( به طور مثال از شريان آئورت قلب تا شريان راديال) به دست مي آيد. بدين منظور دو سيگنال ECG و MMSB را مطابق شکل روبه رو به دست مي آوريم.

در شکل ۱۱سيگنال هايي که بر اساس ECG و متد MMSB از مچ دست به دست آمده است را مشاهده مي کنيد.

اندازه گیری زمان PTT

سيگنال هاي ECG و MMSB

سيگنال ECG ناشي از فعاليت هاي الکتريکي بطن هاي قلب وسيگنال MMSB ناشي از تغييرات ميدان مغناطيسي حرکت ضربان دار شريان راديال است. مي توان با اندازه گيري زمان بين قله سيگنال ECG تا حداکثر شيب سيگنال MMSB مقدار PTT را به دست آورد. فشار خون متوسط طبق زیر تخمين زده مي شود.

www.ircas.ir

فاصله d در واقع فاصله بين قلب فرد تا مچ دست است (مکاني که سيگنال MMSB به دست ميآيد). PTT زمان گذراي پالس اندازه گيري شده در واحد ثانيه است. ρ چگالي متوسط خون در حدود ۱۰۵۰Kg/m3 گزارش شده است.H ارتفاع بين قلب تا دست است که بين ۷cm تا ۹cm است. براي کليه بيماران h=8cm در نظر گرفته شده است.

در شکل ۱۲فشار خون متوسط توسط دو روش کاف و روش MMSB مورد مقايسه قرار گرفته است.

ضربان لحظه ای قلب

نتيجه گيري

کاربردهاي MMSB علاوه بر توانايي صحيح در اندازه گيري ضربان قلب، مي تواند در به دست آوردن مقادير PPT به جاي PPG انگشتي استفاده شود. استفاده از روش MMSB در مقايسه با PPG براي نظارت بر علائم فيزيولوژيکي همانند فشار خون بسيار راحت تر است.

Digital Tooth کنسرسیوم ایرکاس برگزاری دوره های آموزشی

آشنایی با دندان های هوشمند و دیجیتال

دندان های دیجیتال و هوشمند فناوری جدیدی که در تایوان تولید شده اند، این دندان ها می توانند برای دکترتان و بر علیه شما به جاسوسی بپردازند.سنسور تعبیه شده در آنها می تواند اطلاعات خوردنی ها ، نوشیدنی ها یا مصرف دخانیات شما را بلافاصله برای پزشکتان ارسال کند.به گمانم دیگر زمان دور زدن پزشک و دادن اطلاعات غلط به وی گذشته است.

دندانهای دیجیتال دوره آموزش تعمیر تجهیزات پزشکی و دندانپزشکی

حالا دیگر وی به خوبی می داند شما هنگام گفتن جملاتی چون «من واقعا سیگار را ترک کرده ام» یا «من بعد از هر وعده غذایی نخ دندان استفاده می کنم»حقیقت را می گویید یا خیر! زیرا وی یک جاسوس خبره درون دهان شما در اختیار دارد: دندان دیجیتال!این دندان مصنوعی دارای یک فرستنده بلوتوث است و از سیستم سنسور دهانی برای تجزیه و تحلیل حرکات درون دهان تان بهره می برد. شاید هنگام خوردن و آشامیدن به حرکت دهان تان فکر هم نکنید ،

اما این حرکات راه های منحصر به فردیبرای شناسایی فعالیت های در حال انجام دهان تان هستند. خوردن ، آشامیدن و مصرف دخانیات همگی مستلزم حرکات متفاوتی در فک ها است و دندان دیجیتال این حرکات را به کمک شتاب سنج درونی کوچکی ثبت می کند. به محض اینکه دندان حرکتی را در دهان شما تشخیص دهد ، آن را ثبت کرده و برای دکترتان ارسال می کند و این گونه پزشک معالج در جریان عادات بد تغذیه ای یا تخطی شما از دستورات پزشکی قرار می گیرد.

دندان دیجیتال www.ircas.ir

این دندان نتیجه پژوهش محققان دانشگاه ملی تایوان است. دندان دیجیتال تاکنون نتایج بسیار خوبی داشته و در دهان هشت بیمار بطور آزمایشی قرار گرفته و عملکرد کاملا درستی را به نمایش گذاشته است. به گونه ای که شتاب سنج درونی آن با دقت ۹۴درصد به ثبت حرکات پرداخته است.

اگر چه نسخه آزمایشی فعلی آن با کابل به کامپیوتر متصل شده و چندان کارآمد نیست ، اما قرار است نسخه نهایی با نیروی باتری کار کرده و با ارتباط بلوتوث به ارسال اطلاعات بپردازد.

ویسکومتر در مهندسی پزشکی

ویسکومتر در مهندسی پزشکی

ویسکومتر وسیله ای برای سنجیدن میزان ویسکوزیته مایعات است.

برای موادی که ویسکوزیته آنها با جریان یافتن تغییر می کند از ویسکومتر ویژه ای به نام رئومتر استفاده می گردد.

ویسکومتر بروکفیلد

در حالت کلی در یک ویسکومتر دو حالت وجود دارد:

۱- مایع ویسکوز ساکن است و یک شی جانبی در داخل آن (ابزار اندازه گیری ویسکوزیته) حرکت می کند .

۲- وسیله اندازه گیری ویسکوزیته ساکن بوده و سیال ویسکوز حرکت می کند. نیروی کششی که سبب ایجاد حرکت نسبی سیال نسبت به سطح می شود می تواند به عنوان عاملی برای اندازه گیری ویسکوزیته به کار گرفته شود.

نیروی کششی که سبب ایجاد حرکت نسبی سیال نسبت به سطح می شود می تواند به عنوان عاملی برای اندازه گیری ویسکوزیته به کار گرفته شود.

حالت جریان باید به گونه ای باشد که عدد رینولدز به حدی کوچک باشد که بتوان جریان را آرام فرض نمود.

ویسکومتر یو شکل 1

- در دمای ۲۰درجه سلسیوس ویسکوزیته آب ۱٫۰۰۲mpa.s است و ویسکوزیته جنبشی آن برابر با ۱٫۰۰۳۸mm2/s است لازم به ذکر است مقادیر فوق جهت کالیبراسیون ویسکومتر ها به کار می رود

ویسکومتر سقوطی.

*ویسکومتر های سقوطی (Falling sphere viscometers)

قانون استوکس (Stokes’ law)اساس ویسکومتر های سقوطی را تشکیل می دهد.در صورتی که سیال بصورت استاتیک در داخل یک لوله عمودی شیشه ای قرار دارد اجازه می دهیم یک جسم فلزی کوچک که اندازه و دانسیته آن مشخص است در داخل سیال سقوط کند.

*ویسکومتر های دورانی (Rotation viscometers)

اینگونه ویسکومتر ها بر ایده اندازه گیری مقدار گشتاور لازم جهت به چرخش در آوردن یک جسم خارجی در داخل سیال استوار هستند که می تواند راهی برای اندازه گیری ویسکوزیته سیال باشد.

*ویسکومتر های استابینگر (Stabinger viscometer)

به آسانی در داخل نمونه شناور می گردند و به دلیل نیروی گریز از مرکز دقیقا در بخش مرکزی قرار می گیرند. اندازه گیری سرعت و گشتاور در این نوع با اندازه گیری چرخش میدان مغناطیسی و حرکات گردابی و بدون هیچگونه تماس مستقیمی صورت می گیرد

ویسکومتر های U شکل (U-tube viscometers)

*لوله شیشه ای U شکل که بصورت عمودی و در یک حمام کنترل دما قرار دارد.

*در یک سمت این لوله یک مقطع عمودی با قطر مشخصک حذف تاثیر دما در ویسکوزیته میزان کاهش ارتعاشات لرزاننده می تواند با یکی از روش های زیر اندازه گزفته شود.

ویسکومتر یو شکل 2

ویسکومتر های لرزشی

ویسکومتر وسیله سنجش ویسکوزیته یو شکل

ویسکومتر دورانی

ویسکومتر های دورانی

ویسکومتر استوالد گرانروی سنج

اجزای ویسکومتر بروکفیلد 2

ویسکومتر های دورانی

ویسومتر های یو شکل کنسرسیوم ایرکاس

ویسکومترهای U شکل

۱٫اندازه گیری مقدار انرژی لازم جهت ثابت نگه داشتن دامنه ارتعاشات نوسانگر در یک دامنه ارتعاشی مشخص.مناسب برای سیالاتی با ویسکوزیته بالا : انرژی بیشتری جهت ثابت ماندن دامنه ارتعاشی نوسانگر

۲٫اندازه گیری زمان لازم جهت توقف کامل نوسانگر بعد از خاموش شدن آن. هر اندازه ویسکوزیته بالاتر باشد مدت زمان لازم جهت توقف نوسانگر کمتر خواهد بود.

۳٫اندازه گیری فرکانس نوسانگر بصورت تابعی از کنش وارد شده به سیال و واکنش سیال نسبت به آن که در این روش هم سیالاتی با ویسکوزیته بالا به نسبت تغییر فرکانس بیشتری هنگام تغییر فاز از خود نشان می دهند.

برندهای اصلی ویسکومتر

ویسکومترها و رئومترهای بروکفیلد از معتبرترین نوع ویسکومترها در جهان می باشند.

تغییر اندازه ویسکومتر

برندHydramotion viscosity

برندHydramotion viscosity

اجزای ویسکومتر بروکفیلد 1

اجزای ویسکومتر بروکفیلد

اجزای ویسکومتر بروکفیلد

بیان موضوع و روش

کیفیت و نحوه ی عملکرد خون در بدن مستقیما به خواص رئولوژیکی آن از جمله ویسکوزیته وابسته است

بین ابزار های مختلف اندازه گیری ویسکوزیته خون روش استوانه های هم مرکز به دلیل دقت نسبتا بالا , سادگی هندسه , سادگی فیزیک حاکم و سادگی سطوح استوانه ها روشی مناسب است.

با توجه به روابط مشخص ارتباط سرعت دوران با گشتاور برای سیالات نیوتنی و غیر نیوتنی و با داشتن سرعت دوران و گشتاور، ویسکوزیته بدست می آید.

www.ircas.ir ویسکومتر

 پانسمانی که زخم را تا سه روز تازه نگه میدارد

پانسمانی که زخم را تا سه روز تازه نگه می‌دارد

دفتر تحقیقات نیروی دریایی آمریکا به دنبال ساخت یک پانسمان جراحی جدید برای میادین جنگ است که نه تنها اندام زخمی را پوشش می‌دهد بلکه آسیب را کاهش داده و با تازه نگهداشتن زخم‌ها، بافت را تا ۷۲ساعت حفظ می‌کند.

به گزارش ایسنا به نقل از گیزمگ، زخم‌های ایجاد شده در میدان‌ها جنگ اگر به سرعت درمان نشوند، ممکن است به تهدیدی برای اندام و جان فرد تبدیل شوند. متاسفانه همیشه امکان انتقال سریع مجروحان به درمانگاه وجود ندارد، بنابراین پانسمان “ACCSIL ” می‌تواند پاسخ مناسبی برای نگهداری از مجروحان تا زمان دسترسی به خدمات پزشکی مناسب باشد.

پانسمان کردن زخم‌ها در زمان جنگ به ویژه برای آسیب‌های ناشی از انفجار بسیار سخت است. پزشکان علاوه بر تثبیت وضعیت بیمار با به حداقل رساندن خونریزی و دفع شوک، باید زخم را بطور مناسبی ببندند تا امکان فساد زخم کمتر شده و باکتری و عفونت به آن وارد نشود.

پانسمان جدید توسط شرکت “Battelle” و با همکاری دفتر تحقیقات نیروی دریایی آمریکا، آزمایشگاه تحقیقاتی نیروی دریایی و مرکز تحقیقات پزشکی نیروی دریایی، ابزار “ACCSIL” را به همراه یک شریان بند برای استفاده پزشکان و پزشکیاران طراحی کرده است. این ابزار یک پانسمان سبک‌ وزن است که محکم روی اندام بسته شده،‌ زخم را تازه نگه می‌دارد و از بافت‌ها تا ۷۲ساعت حفاظت می‌کند.

“ACCSIL” از دو بخش ساخته شده است. بخش خارجی شامل پوششی است که مطابق با شکل اندام طراحی شده و می‌تواند جلوی خونریزی را گرفته، بخش مذکور را گرم نگهدارد و آن را در برابر آلودگی حفظ کند.

بخش داخلی شامل یک لایه فعال زیستی است که زخم را مرطوب و آغشته به مواد شیمیایی خاص برای ارائه آنتی‌بیوتیک و مسکن نگهداشته تا از رشد باکتری و قارچ جلوگیری شود.

این پانسمان که دو سال دیگر ارائه خواهد شد،‌ نه تنها برای سربازان، بلکه برای استفاده بر روی کشتی‌ها، زیردریایی‌ها، کارخانجات،‌ مزارع، تصادفات جاده‌ای و حملات تروریستی که دسترسی به امکانات پزشکی برای عمل جراحی محدود است، کاربرد خواهد داشت.

ژنهای عامل اوتیسم

ژن‌های عامل اوتیسم کشف شدند

محققان دانشگاه پرینستون موفق به کشف 2500 ژن شدند که با بیماری اوتیسم در ارتباط هستند.

به گزارش ایسنا به نقل از یاهو، این ژن‌ها که احتمالا با بیماری اوتیسم در ارتباط هستند براساس نحوه عملکردشان و براساس مرتبط بودن با هر یک از بخش‌های مغز به صورت گروههای رنگی در کنار هم تشکیل شده‌اند.

بدن انسان دارای حدود 25,000 ژن است و محققان پیشتر تنها 65 ژن حامل خطر ابتلا به اوتیسم را کشف کرده بودند اما در حال حاضر محققان دانشگاه پرینستون در نیوجرسی بیش از 2500 ژن را شناسایی کرده اند که می‌تواند شرایط را برای ابتلا به اوتیسم مهیا کند.

این کشف بسیار مهم است زیرا دانشمندان را به سمت یافتن درمان های جدید و موثر برای این بیماری می‌برد.

اوتیسم یک بیماری است که شرایط را برای برخی از افراد برای برقراری ارتباط، یادگیری و معاشرت دشوار می‌سازد.

محققان با استفاده از یک برنامه کامپیوتری یادگیری ماشینی موفق به شناسایی ژنهای مرتبط با اوتیسم شدند.

این برنامه شباهت‌های بین ژن‌های مربوط به مغز و ۶۵ژن حامل خطر اوتیسم را شناسایی کرد.

آنها همچنین به بررسی ژن هایی پرداختند که با هر دو گروه مرتبط است.

این محققان اظهار کردند که روند این پژوهش مانند پیدا کردن دوستان در فیس‌بوک است.

اگر فیس بوک بخواهد به شما دوستانی را پیشنهاد کند در ابتدا باید دوستان شما را شناسایی کند و بعد کسانی را شناسایی کند که با آنها در ارتباط هستند. استراتژی این روش شناسایی ژن نیز دقیقا به همین گونه است.

این استراتژی جدید نشان می‌دهد که داشتن ژن‌هایی که هم با ژنهای مرتبط با مغز و هم به ژنهای مرتبط با اوتیسم آشنا باشند، می‌تواند خطر ابتلای فرد را به اوتیسم افزایش دهد.

محققان هنوز راه بسیار زیادی تا درمان کامل این بیماری دارند اما این تحقیقات جدید می‌تواند به درمانهایی منجر شود که به واسطه آنها بتوان این بیماری را در سنین پایین درمان کرد.

محققان با بررسی پنج کودک اوتیسمی دریافتند همه آنها دچار دچار نقص در ژن SHANK3هستند. این ژن مسئول ایجاد ارتباطاتی در مغز است که در یادگیری زبان اهمیت دارند.

"توماس بورژرون" سرپرست این تحقیق گفت تحقیق موسسه پاستور نقش حیاتی این ژن در تشکیل ارتباطات عصبی در مغز را به اثبات رساند. این ژن در تمام موارد اوتیسم نقش ندارد. اما می‌تواند اختلالات ارتباطی که مهمترین موانع اجتماعی بر سر راه بسیاری از مبتلایان است را توضیح دهد.

این مطالعه بر روی پنج بیمار از سه خانواده انجام شد که به نشانگان اوتیسم یا "آسپرگر" مبتلا بودند.

نشانگان "آسپرگر" یک اختلال طیف اوتیسم است که بیشتر علایم اوتیسم را دارد، اما مشکلات ارتباطی در آن شدت کمتری دارد. بیماری "آسپرگر" از هر 200 کودک یکی را مبتلا می‌کند و پسران چهار برابر دختران به آن دچار می‌شوند.

این گروه از محققان در سال 2003 نیز به وجود نقص در ژن SHANK3پی برده بودند. این ژن پروتیین‌های ضروری برای ایجاد سیناپس را تولید می‌کند. محققان متوجه درجات مختلف "حذف" در این ژن شدند.

این تحقیق با همکاری موسسه خدمات روانپزشکی اینسرم پاریس و دانشگاه گوتنبرگ سوئد انجام شده است.

اوتیسم تا قبل از سه سالگی ظاهر نمی‌شود با این حال این بیماری در 18 ماهگی نیز قابل تشخیص است.

کودکان اوتیسمی سراسر عمر خود در کسب مهارتهای اجتماعی و توانایی‌های ارتباطی مشکل دارند و خانواده آنها در مراقبت از آنها ، بار سنگین مالی و عاطفی را متحمل می‌شود.

 افزایش آماراوتیسم ا

آمارها نشانگر افزایش ابتلا به این بیماری در جهان است.

براساس اعلام انجمن اوتیسم آمریکا، میزان ابتلا به اوتیسم سالیانه 10 تا 17 درصد افزایش می‌یابد که افزایش آگاهی و تشخیص بیماری می‌تواند در افزایش آمار اوتیسم نقش داشته باشد.

برآوردهای مرکز کنترل بیماری در آمریکا نشان می‌دهد از هر 166 تا 500 کودک یکی به اختلالات طیف اوتیسم دچار است.

علت اوتیسم ناشناخته است. سالها مطالعه صرف شناسایی علت ژنتیکی این بیماری شده است.

ادعای برنارد ریملند پژوهشگر اوتیسم در آمریکا که علت افزایش اوتیسم را واکسن‌هایی می‌دانست که در دوران کودکی تزریق می‌شود، جنجال‌هایی را در محافل علمی مطرح کرد. این تحقیق در شماره اینترنتی نشریه "نیچر ژنتیک" منتشر شده است

درمان استروئیدی ریه نوزادان احتمال مشکلات چشمی بدنبال دارد

درمان استروئیدی ریه نوزادان، احتمال مشکلات چشمی بدنبال دارد

نتایج پژوهش محققان دانشگاه میشیگان نشان می‌دهد، درمان استروئیدی که برای کمک به ریه‌های کودکان زودرس مورد استفاده قرار می‌گیرد، می‌تواند خطر مشکلات چشمی آنان را افزایش دهد.

مدت مدیدی است که استفاده از کورتیکواستروئیدها برای نوزادان کم وزن نارس با تردید رو به روست، چراکه گمان‌ها مبنی بر مضرات زیاد آن وجود دارد.

به منظور انجام این پژوهش داده‌های مربوط به هزار و 500 نوزاد کم وزن (کمتر از 500 گرم در هنگام تولد) مورد بررسی قرار گرفت.

هرچند این پژوهش نمی‌تواند رابطه علت و معلولی را نشان دهد اما تا حد دلایل پزشکی می‌توان به این نتایج می‌توان اعتماد کرد. به گفته محققان شرایطی موسوم به رتینوپاتی نوزادان نارس، در کودکان درمان شده از طریق استروئید 60 درصد گزارش شد. این درصد برای کودکانی که هنوز از این دارو مصرف می‌کنند، 70 درصد عنوان شد.

هرچند خطر ابتلا به مشکلات بینایی مکن است برای این کودکان وجود نداشته باشد، اما اختلالات چشمی ممکن است در آینده برای این دسته از کودکان وجود داشته باشد. بنابراین محققان این مطالعه تاکید کرده‌اند که پزشکان باید با هوشمندی نقاط ضعف و قوت این دارو را در کنار یکدیگر بگذارند و تصمیم درستی را مبنی بر استفاده یا عدم استفاده از این دارو در نوزادان بگیرند تا مانع از بروز اختلالات چشمی در سنین پایین شوند.

این پژوهش در مجله "Journal of the American Association for Pediatric Ophthalmology and Strabismus " منتشر شده است.

دوربین خوراکی

کپسول اندوسکوپی؛ یک دوربین خوراکی

کپسول اندوسکوپی(M2A) برای اولین بار در آگوست ۲۰۰۱تعریف شد. این کپسول از یک دوربین بی سیم کوچک و قابل بلع برای تصویربرداری بدون درد از روده باریک طراحی شده است. کپسول اندوسکوپی؛ یک دوربین خوراکی است که تنها ۱۱میلیمتر در ۲۶میلیمتر اندازه دارد و شامل دوربین، منبع نور، رادیوترانسمیتر و باتری است. بیمار به راحتی می تواند آن را ببلعد و دوربین کپسول می تواند حدود ۲تصویر در هر ثانیه و در حین عبور از مجرای گوارشی بگیرد.

بیمار یک وسیله ثبت به اندازه یک واکمن به مچ دست یا یک کمربند به کمر می بندد. هزاران تصویر ویدئویی از طریق پروب های متصل به جدار شکم منتقل و در وسیله ثبت ذخیره می شوند و سپس به کامپیوتر انتقال می یابند تا پزشک آنها را ببیند. کپسول اندوسکوپی در شرایطی مانند دردهای شکمی، خونریزی، سوء جذب، تومورها و زخم های ناشی از دارو به کار می رود. این کپسول همراه با آب بلعیده می شود ، قابل هضم نیست و به طور طبیعی از بدن دفع می شود. شایان ذکر است که این کپسول ها به صورت یک بار مصرف تولید می شوند.

امروزه اندوسکوپی با فرستادن سیم های فیبراپتیک به داخل بدن و تفکیک ارسال اطلاعات انجام می شود که گاهی همراه با ایجاد مصدومیت و ناراحتی به دلیل پیشرفت نوک اندوسکوپ تا روده باریک می شود. برای حذف چنین مشکلی کپسول های مینیاتوری قابل بلعی طراحی شده اند که این روش تهاجمی را تا درصد بسیار بالایی تعدیل می کند. این کپسول ها با پایین رفتن از مری به سمت معده و روده ها تصاویر حاصله را به گیرنده ارسال کرده و توسط پزشک بررسی می شوند. این وسیله تصاویر دو بعدی تهیه کرده و به طور هم زمان اطلاعات تصویری را انتقال می دهد و سیگنال های لازم برای کنترل الکترونیکی کپسول ها دریافت می دارد.

آماده سازی استاندارد بیماران شامل ۱۲ساعت غذا نخوردن پیش از آزمایش است. آماده سازی نسبی روده توسط پلی اتیلن گلیکول یک روز پیش از آزمایش یا حداکثر ۱۶ساعت قبل یا در همان روز آزمایش حداقل ۳-۲ساعت قبل از اندوسکوپی صورت می گیرد. در هر حال، ۸۰میلی گرم سایمتیکون، ۲۰دقیقه پیش از اندوسکوپی برای تمام بیماران توصیه می شود. ۲لیتر پلی اتیلن گلیکول و ۱۰میلی گرم متوکلروپرامید نیز توصیه می شود. علت این توصیه ها این است که هنگامی که کپسول ها خورده می شوند و در طول روده باریک پیش می روند، اگر روده پر از مواد باشد امکان مشاهده جدار مخاطی آن نخواهد بود. قابل ذکر است که اریترومایسین اثر خاصی بر پیشرفت کپسول ها در روده باریک ندارد در حالیکه متوکلروپرامید احتمال آزمایش موفق روده باریک را افزایش می دهد. ( متوکلروپرامید زمان عبور را در روده باریک کاهش می دهد). بیماران اجازه دارند تا ۲ساعت پیش از اندوسکوپی مایعات رقیق و ۴ساعت بعد از آن غذای سبک میل کنند.

Capsule Endoscopy

اجزاء سیستم

دو نوع سیستم وجود دارد. درنمونه اول ، جزء اولیه سنسور تصویری CMOS و لنز تصویربرداری داخل روده است. دوربین ۳/۱اینچی که سیگنال ویدئویی NTSC را تولید می کند و بسیار کم مصرف است و تنها نیاز به ذخیره ۵V-DC دارد. ۴عدد LED در بالای سنسورها برای تامین روشنایی جهت نمایش بافت لازم است. یك انتقال دهنده سیگنال برای انتقال تصاویرگرفته شده به دنیای بیرون مورد نیاز است که شامل یک نوسانگر موضعی است که سیگنال RF در باند UHF با MHZ315 فركانس و قابل اتصال به كابل نمایشگر است. سیگنال های حاصل AM بوده و تقویت می شوند.آنتن دوم موجود دركپسول برای دریافت اطلاعات از كنترلر بیرونی است. این آنتن اطلاعات را به گیرنده RF می رساند. IC موجود در كپسول شامل نوسانگری است كه در فركانس MHZ433 اطلاعات را دریافت كرده و عمل متعادل سازی را انجام می دهد و آنها را به قطعه كدگذار انتقال می دهد. از طریق این اطلاعات است كه فرد از بیرون می تواند دوربین كپسول یا یك یا تمام LED ها را روشن یا خاموش كند. مصرف دستگاه كم و كیفیت تصاویر بالا است، انرژی مورد نیاز کپسول توسط یک باتری تامین می شود. تمام اجزای داخلی كپسول از طریق یک تقویت کننده با خروجی بالا حمایت می شوند. تمام اجزای توصیف شده بر روی یک چیپ PCB جای گرفته اند.

درنوع دوم، تمام تمام تصاویر کدگذاری شده، کدبرداری و کنترل عملکردهای کپسول از طریق یک چیپ CPLD انجام می شود .(Complex Programmable-Logic Device) تمام سیگنال های زمان و مکان نیز توسط CPLD تولید می شوند. تفاوت قابل ملاحظه با ترکیبات قبلی این است که در این مورد خروجی سنسورها به صورت آنالوگ نیست و به صورت سیگنال های UHF از بیرون منتقل نمی شوند. در عوض تصاویر ۸بیتی به صورت پیکسل اطلاعاتی هستند که از طریق سنسورها تولید شده و قبل از انتقال از طریق باند UHF از طریق CPLDکدگذاری می شوند.از آنجا که خروجی های سنسور همیشه مطمئن نیستند، CPLD زمان گرفتن نمونه ها را به دقت ثبت می کند. در این مدل سرعت انتقال اطلاعات بهMbit/sec 2 رسیده است.

در سیستم اول نمونه های تصویری بر اساس ساعت داخلی کپسول زمان بندی می شوند و پیکسل های افقی و عمودی ارائه می دهند. تمام این پالس های دیجیتال ازطریق CPLD سیگنال منفرد تبدیل و به انتقال دهنده RF می روند. در این مرحله تصاویر از روی پیکسل ها بازسازی می شوند. انرژی مصرفی در حالتی که تمامی اجزاء روشن هستند، V3/3، MA 20، MV 66 و هنگامی که فقط CPLD و دریافت کننده ها روشن هستند V 3/3، MA 9، MV 7/29 است.

مصرف توان پائین به معنی این است که قادر به گرفتن تصاویر در بازه زمانی طولانی تر است. در طی مدت زمان تعیین شده ۸الی ۱۲ساعت امتحان داخل احشاء، کپسول دو تصویر در ثانیه معادل ۶۰,۰۰۰تصویر از احشاء خواهد گرفت. همچنان که بیماران به دنبال کارهای روزانه خود هستند، کپسول تصاویر را جمع آوری کرده و آنها را با استفاده ازRF می فرستد. یک آنتن جاسازی شده در كمربند یا مچ بند تصاویر را دریافت کرده و آنها را در ضبط کننده ذخیره می کند. پس از این که دوربین از سیستم عبور کرد، بیمار كمربند یا مچ بند ضبط کننده را به دکتر می دهد و دکتر تصاویر را بر روی نرم افزار RAPID دانلود می کند (تحلیل کننده تصاویر و اطلاعات) و این شامل تصاویر ویدئویی شامل۲۰دقیقه از عمل کرد احشاء داخل بیمار است که پزشک می تواند آن را جهت اطلاعات غیر طبیعی بررسی کند.

مدارها کاملا در کپسول و با یک عایق پلاستیکی قرار گرفته اند.کپسول یک شکل خاص مکانیکی دارد، همچنان که داخل دستگاه گوارش حرکت می کند خود را با مالیدن به دیوارهای مجرا از هر چیزی که مانع دید شفاف آن باشد، تمیز می کند.

خوشبختانه، دستگاه قابل مصرف مجدد نیست! در حقیقت، یک کلید مطمئن جهت مدارات تصویر گیرنده، این تضمین است که آنها یک بار مصرف بوده و بازار سیاهی برای این قطعات وجود ندارد.

Technology Trends Drives The Capsule Endoscopy System In 2015

آماده سازی پیش از اندوسکوپی

پنج روز پیش از انجام عمل

-قطع هر گونه داروی حاوی آهن

-عدم مصرف آجیل،دانه ها، ذرت

یک روز پیش از عمل

-عدم مصرف لبنیات

-مصرف صبحانه قبل از ۸صبح( یک تخم مرغ آب پز، نان تست، بدون کره)

-اجتناب از مصرف غذاهای حاوی رنگ ارغوانی و قرمز

-پس از ۹شب چیزی مصرف نشود.

روز عمل

-مصرف ۸لیوان آب ۲ساعت قبل از عمل

-از ۱ساعت قبل از عمل چیزی ننوشند.

-داروهای معمول را همراه داشته باشند.

-داروهای ضروری ۲ساعت بعد از عمل صرف شود.

-لوسیون پوستی بر پوست شکم استفاده نشود.

 

کپسول خوراکی اندوسکوپی 20 728

مزاياي پزشكي

در روش سنتی یک لوله 21 فوتی به سختی زیاد داخل مجرای گوارشی می شود، اما این روش جهت پیدا کردن خونریزی های گوارشی داخل سیستم شده و مانند یک تکه از غذا با همان روند نرمال حرکت می کند. با یک بار بلع به صورت اتوماتیک- تنها با 8- 6 ساعت غذا نخوردن و فقط نوشیدن مایعات شفاف که روی دید دوربین اثر نگذارد. ا لبته یک یا دو مشکل در پیدا کردن آدرس تصویر گرفته شده موجود است. برای مثال راهی وجود ندارد که محل عکس برداری مشخص شود. اما مدل M2Aplus، یک نرم افزار دارد که یک گزارش گرافیکی از دستگاه گوارشی بیمار می دهد، با جایگزاری اطلاعات، پزشک با اطمینان بیشتر قادر به تعیین محل مشکل است.

کپسول اندوسکوپی یک دوربین خوراکی 1

خطرات كپسول اندوسكوپي

ا ین کپسول ها از مواد پوشش دار مطابق با مقاومت بدن تشکیل شده که نسبت به مایعات هاضم بدن مقاوم هستند. بیماران درد یا ناراحتی ندارند اما در موارد نادری احتباس کپسول ها درروده کوچک به دلیل انسداد یا باریک شدن آن رخ می دهد. این امر بیشتر ممکن است در بیمارانی که سابقه جراحی گوارشی یا انسداد روده دارند رخ دهد. بیمارانی که وسایل الکتریکی مانند ضربان ساز قلبی دارند حین اندوسکوپی باید مانیتور شوند. بیماران تا زمان دفع کپسول اجازه انجام MRI ندارند. بیمار 8 ساعت پس از بلع می تواند وسیله ثبت را از خود جدا کند، کپسول طی 2 الی 3 روز پس از بلع از طریق حرکات طبیعی روده دفع می شود. ضایعات باقیمانده پس از دفع کپسول هیچ گونه اثر سوء زیست محیطی به جای نمی گذارند .

حمام ایرانی

در گذشته های دور، پیروان آیین مهر و زرتشت به پاکیزگی بسیار توجه داشتند.در 1500 یا 2000 سال پیش شستشو به گونه ی امروزی نبود.در آن زمان گرمابه ساختمانی گرم بوده و شستشو در ظرف بزرگی به نام آبزن انجام می شده است.

چون مردم آب را مقدس می دانستند و نمی خواستند آن را آلوده کنند،پساب را پس از شستشو روی زمین می ریختند یا به آسمان پاشیده و هرگز آن را در آب پاک نمی ریختند.

گرمابه هم مانند بازار افزون براینکه کارکردی ویژه داشته،جای گردهمایی مردم محل نیز بوده است.

حمام

حمام نیز از جمله ابنیه مهم شهری بوده که معمولا در مراکز محلات و یا در مجاورت راسته های بازار و یا گذرگاه های اصلی احداث می شده است.

از دوره پیش از اسلام،آثار به جا مانده از حمام های خصوصی در کاخ تخت جمشید(دوره هخامنشی) و کاخ آشور(دوره اشکانی) یافت شده است.

گرمابه ساختمانی همگانی بود که با یک درگاه به بیرون راه داشت تا هوای درون آن همیشه گرم بماند.

گرمابه،برابر جایگاه گرم است،همچون سردابه که برابر جایگاه سرد است

تکوین حمام های سنتی به گونه ای که تا پیش از سیستم لوله کشی جدید شهری مورد استفاده مردم قرار می گرفته است به دوره اسلامی باز می گردد

دوره رونق ساخت حمامها مربوط به عصر صفویه است. در این دوره در کنار ساخت و سازهای گسترده، تعداد نسبتاً زیادی حمام در شهر های مختلف ایران ساخته شد که شماری از آنها در نوع خود شاهکار بود

(از جمله حمام گنجعلیخان کرمان، حمام خسروآقا و علیقلی آقای اصفهان و تعدادی دیگر)

بعد از دوره صفوی هر چند معماری اسلامی هرگز رونق گذشته را به دست نیاورد با این حال در دوره زندیه و قاجاریه، حمام های با شکوهی ساخته شد که از بهترین آنها، حمام وکیل شیراز، از ساخته های

کریم خان زند، و حمام ابراهیم خان کرمان از دوره قاجاریه- می باشد

کهن ترین گرمابه ای که هنوز هم رونق دارد، گرمابه وزیر یزد نزدیک مسجد جامع است که از زمان آل مظفر به جا مانده است.

عناصر فضایی تشکیل دهنده حمام عبارتند از :

اجزای حمام

1- تون : مکانی در حمام که کوره در آن قرار دارد،به این مکان گلخن یا آتش خانه نیز می گویند.

2- تیان : ظرفی فلزی در کف خزینه حمام،بر روی تون،برای گرم کردن آب خرینه

3- چال حوض/چهار حوض: در حمام، حوضی بزرگ و نسبتا عمیق از آب سرد(معمولا در کنار گرمخانه) برای آبتنی و شنا

4- خزینه : در حمام، اتاقی کوچک برای شست و شو، در کنار گرمخانه و بر روی گلخن،که در آن تا نیمه آب می ریزند.بعضی از حمام ها علاوه بر خزینه آب گرم خزینه آب سرد نیز دارند.

5- خلوت گرم خانه : در حمام، فضایی در جوار گرم خانه که مخصوص استحمام خواص و بزرگان بوده است

6- سربینه : محل رخت کندن و استراحت و گفتگو در حمام، که پس از مدخل و پیش از گرم خانه قرار دارد.

7- گربه رو :

1) مجرای هوا در زیر کف، برای دفع رطوبت

2)در حمام، مجرایی که هوای گرم و دود تون را از زیر کف حمام عبور می دهند و کف و هوای حمام را گرم می کنند.

8- گرم خانه :

1) شبستان زمستانی

2) در حمام، محل اصلی استحمام و جای مشت و مال که خزینه از ملحقات آن است

9- میان در : فضای بین سربینه و گرم خانه حمام، که آن دو را از هم جدا می کند و از تبادل حرارت بینآنها می کاهد.

از آنجا که استحمام شامل مراحل مختلفی است، لذا حمام های سنتی ایران دارای فضاهایی با عملکردها و خصوصیات متفاوت بوده اند.در این رابطه فضاهای داخل حمام را می توان به سه قسمت

1) نیمه گرم مرطوب

2) گرم و مرطوب

3) بسیار گرم و بسیار مرطوب

تقسیم نمود.

سیستم تنظیم شرایط محیطی در حمام:

به گونه ای بوده که حرارت و رطوبت به ترتیب از هشتی ورودی و سربینه (نیمه گرم و مرطوب) به صحن حمام و گرم خانه (گرم و مرطوب )و نهایتا به خزینه حمام (بسیار گرم و بسیار مرطوب) بیشتر می شده است .لذا هریک از این فضاها مستقل بوده و تنها از طریق دالانهای باریک و غیر مستقیم و یا هشتی های کوچکی با یکدیگر ارتباط داشته اند

ترتیب سلسله مراتب فضاهای مختلف حمام به گونه ای بوده که مشتریان ابتدا پس از دخول به حمام . گذر از دالان و هشتی ورودی، وارد سربینه حمام می شدند.

در گرمابه ها برای اینکه هوای بیرون کمتر با هوای سربینه آمیخته شود و درون آن گرم بماند،دالانی پر پیچ و خم را به دهلیز و دهلیز را به بیرون می رساند.می دانیم که انسان هنگامی که یکباره از جایی گرم به جایی سرد و یا وارون آن برود،چون دمای هوا ناگهان تغییر می کند،ممکن است بیمار شود.برای همین در گرمابه ها به این نکته اساسی توجه می شده است و همواره دالانی پیچ در پیچ، دهلیز را از درآیگاه گرمابه جدا می کرده است.بدین گونه هوای سرد بیرون نمی توانسته یکباره به درون آید.

گرمابه های کهن همگی دارای سه بخش بنیادی هستند :

1- بینه یا رختکن:فضایی بزرگ و سر پوشیده با حوضی بزرگ در میان و سکوهایی در گرداگرد آن است.

این حوض هم برای شستن و آب کشیدن پا و هم آذین می باشد.پس از دالان، دهلیز و سپس بینه یا رختکن می باشد که فضایی نیمه گرم و کمابیش خشک است.این قسمت حکم ورودی حمام را داشته و از سایر قسمت ها مجلل تر بوده و تزیینات بهتری داشته است.در گذشته گاه در بخشی ازبینه، سلمانی سر هم می تراشید.برای خشک کردن لنگها راه پله ای برای دسترسی به بام ساخته می شد.پیشخوان و دخل حمامی نیز در کنار دهلیز قرار داشت.بینه به شکل چهار پهلو، هشت پهلو و کشکولی ساخته می شده و در گوشه های آن رختکن و در میان ،حوض آب سرد قرار داشت

کفش کن : سپس جهت استحمام، کفشها را کنده و آنها را در قسمت کفش کن که در زیر سکوی سربینه می باشد، قرار دادند و وارد سربینه می شدند

رختکن : قسمت مانند سکویی اطراف سربینه را احاطه کرده و مشتریان لباسها را در آنجا کنده و در گوشه ای قرار می دادند

2- میان در: میان دو بخش بینه و گرم خانه جای دارد.

میان در راهرو یا دالانی است که به چند جا راه داشته، یکی به آبریزگاهها و دیگری به جایگاه ستردن مو.بدین گونه میان در، هوای گرم خانه و بینه را از هم جدا نگه می داشته و یک فضای میانجی بوده است.

قسمت میان در،معمولا از طریق یک یا دو راهروی مجزا، به مستراح ها و اطاق های تنظیف ارتباط داشت.میان در یک یا دو سکو برای انداختن لنگ و دولچه(ظرف دسته دار برای آب برداشتن)و اسباب گرمابه داشته و راه دستشویی و آبریزگاه و نیز جایی برای ستردن موی تن، بیشتر همین میان در بوده، ولی کسانی که نیاز به این کار نداشتن یک راست به گرم خانه می رفتند.

اطاق تنظیف(نظافتخانه)جهت نظافت بدن،حنا بندی و حجامت مورد استفاده قرار می گرفته است.

فضای میان در معمولا به صورت هشتی یا یک دالان باریک و دارای ارتباط غیر مستقیم با بینه، گرم خانه،

مستراح و اتاق تنظیف بوده و علاوه بر مسیر ارتباطی،عملکرد آن جدایی،تبادل حرارتی و رطوبتی و همچنین بصری بین قسمت های مختلف حمام بوده است.

3- گرم خانه یا صحن گرمابه:

گرم ترین بخش گرمابه است.این بخش یک خزانه ی آب بزرگ و دو خزانه ی کوچک دارد،یکی آب سرد و دیگری آب داغ که در دوسوی خرانه بزرگ هستند و آب آنها را همیشه تمیز نگه می داشتند و کسی به آنها دست نمی زده و درون آن هم نمی رفتند.این دو، قله یا گله و هردوی آنها قلتین نامیده می شدند.از این دو،آب گرم و سرد را به خزانه بزرگ می رساندند که مردم درون آن خود را شستشو می کردند.آنها یک بار در آغاز برای خیس خوردن و بار دیگر پس از پایان شستشو برای آبکشی یا غسل کردن به درون خزانه می رفتند.

پس از عبور از گرم خانه(صحن حمام)، و بالا رفتن از چند پله، وارد خزینه می شدند.فضای خزینه گرمترین و مرطوب ترین قسمت حمام است و لذا صرف نظر از ورودی کوچک آن، کاملا محصور می باشد.

در زیر یا کنار گرمابه کوره ای برای گرم کردن آب به نام آتشدان، گلخن یا تون می باشد که سوخت آن بوته بوده است.آتش این تون از زیر به یک یا دو دیگ به نام تیان می رسد که کف خزانه آب گرم کار گذاشته شده است.دیگها از آلیاژ هفت جوش یا به گفته دیگر آمیزه ای از روی، مس، قلع، سرب، و چیز دیگر ساخته می شوند تا در برابر آتش و آب پایدار باشند.

برای گرم کردن هوای این بخش ها در زیر کف جوی هایی پیچ در پیچ به نام گربه رو می ساختند و روی آن را می پوشاندند و دود تون را به درون آنها می راندند.گربه رو ها را کنو بندی می کردند.بدین گونه که روی آن را با یک تاق آجری کوچک می پوشاندند و بعد هم کف سازی می کردند و گاه هم روی آن را با تخته سنگ می پوشاندند.

هر گرمابه دو دودکش داشته استکه دور از تون بوده اند.یکی دود را یکراست به بیرون می فرستاده و دیگری از پیچ و خم های گربه روها می گذرانده و در پایان به بیرون می فرستاده است.

پس از روشن کردن آتش تون،نخست دهانه گربه رو ها را می بستند و دهانه دود کش یکراست را باز می کردند تا دود نخست به تندی خود را بالا کشد و بیرون برود.پس از گرم شدن تون،آن دودکش را می بستند و راه گربه رو را باز می کردند. تا دود از گربه رو ها بگذرد و از دودکش دوم بالا برود

چون فضای گربه رو را دوده می گرفته و احتیاج به تمیز کردن داشته، معمولا ابعاد آنرا به اندازه ای می گرفتندکه یک نفر به طور خمیده بتواند از آن بگذرد و تعمیرات احتمالی و یا نظافت آن را انجام دهد.روی گربه رو ها را با سنگهای ورقه مرمر و یا سنگهای مشابه می پوشاندند.این نوع سنگها نه تنها امکان تبادل حرارت بین گربه رو و فضای بین گربه رو و فضای داخل حمام را میسر می کرده، بلکه از نظر دوام، نظافت و شستشوی سطح آن، بهتر از مصالح دیگر بوده است .

چال حوض

در مجاور فضای گرمخانه در بعضی از حمام ها که بزرگتر و مجلل تر بودند استخری به نام چال حوض قرار داشته است.آب اغلب چال حوض ها گرم نبوده و آن برای شنا کردن در تابستان استفاده می کردند،مانند حمام گنجعلی خان. ولی برخی چال حوض ها مانند حمام فین کاشان که یک حمام سلطنتی بوده دارای تیان بوده و به وسیله حرارت آتشدان همانند خزینه، آب آنها را گرم می کردند.نحوه انجام این شنا بدین طریق است که آب را بادو دست به زیر شکم می آوردند و با جفت پا(پا دلفین) آب را به عقب می زدند.

در مجاور گرم خانه، به جز چال حوض، حوض های کوچک دیگری نیز بوده که در کنار آنها افراد خود را می شستند.در وسط بینه نیز غالبا یک حوض بزرگ بوده که علاوه بر زیبایی، به مرطوب نمودن فضای بینه کمک می کرده است.همچنین حوض کوچکی در بالای پله های سربینه وجود داشته که افراد پای خود را آن آب می کشیدند.آب این حوض به صورت روان بوده است.

وجود این حوض های آب در قسمت های مختلف حمام، هوای هر قسمت را نسبتا مرطوب نموده.ولی باید توجه داشت که راههای ارتباطی بین فضاهای اصلی حمام به صورت محصور و غیر مستقیم بوده، لذا رطوبت بیش از حد هوای فضاهای مرطوب وارد قسمتهای نیمه مرطوب نمی شده و بدن مشتریان هنگام ورود به حمام، به تدریج به آب، رطوبت و حرارت نزدیک می شده و هنگام خروج نیز به همین ترتیب،به تدریج از رطوبت و دمای هوا در فضایی که مشتریان عبور می کردند کاسته می شده است

ساختمان گرمابه های کهن را در گودی زمین می ساختند تا پایدارتر بوده و گرما به هدر نرود .

از جمله تمهیدات اتخاذ شده برای کاهش تبادل حرارتی بین داخل و خارج فضای حمام، قرار دادن بنای حمام در داخل زمین بوده، بنحوی که غالبا کف حمام چند متر از سطح گذرگاه عمومی قرار داشته و بدین ترتیب خاک اطراف دیواره ها همانند یک عایق حرارتی عمل کرده و میزان تبادل حرارت بین داخل و خارج

ساختمان را کم می کرده.همچنین بدنه ضخیم حمام به علاوه خاک مجاور آن همانند یک خازن حرارتی عمل کرده و در تعدیل نوسان درجه حرارت در داخل ساختمان موثر بوده است.

از دیگر مزایای قرار دادن بنا در داخل زمین، مقاومت بهتر ساختمان در برابر نیروی زلزله بوده است.

مزیت سوم و بسیار مهم آنکه امکان سوار شدن آب های جاری در جویها که از رودخانه و یا قنات سرچشمه

می گرفته،بر حمام هایی که از این آب استفاده می کردند، میسر می گشته است.

البته در مناطقی که سطح آبهای زیرزمینی بالا می باشد، مانند سواحل جنوبی دریای خزر، سواحل خلیج فارس و دریای عمان،بالاجبار بدنه حمام را بر روی زمین بنا می کردند.

روشنایی

از آنجا که بخش عمده از سطوح جانبی اکثر حمام ها در داخل زمین بوده،لذا نور آفتاب از طریق نورگیرهای سقفی و یا پنجره های زیر طاق وارد فضای حمام می شده است.

معمولا پوشش گرمابه ها، طاق کلمبو بوده که می توان در نوک آن سوراخی برای نورگیری گذاشت.در نوک آن شیشه هایی کار می گذاشتند که به آن جامخانه می گفتند.شیشه های جام را می شد برداشت و دوباره جا زد.

در زمستان این شیشه ها به جز یکی دوتای آنها،بسته بوده و در تابستان برخی از آنها را برمی داشته اند تا هوارسانی انجام شود.

آب بندی جام خانه ها نیز مهم بوده است.آنها چیزی همانند ماستیک امروزی از گل رس و روغن برزک به نام مومینه درست می کردند تا شیشه های جام را در زه سفالینشان آب بندی کند.هر کدام از بخشهای گرمابه ، یک جام خانه در گنبد داشته است که گاه خودش همانند گنبد اصلی در می آمده که در برخی جاها تنها 60 سانتی متر قد داشته و تا 10 یا 12 جام هم روی آن کار می گذاشتند

اقلیم

به لحاظ اینکه حمام محیطی نسبتا بسته می باشد و ارتباط کمی با شرایط اقلیمی مجاور خود دارد، لذا ساختار کلی حمام ها در مناطق گوناگون اقلیمی ایران کمابیش مشابه است و عوامل اقلیمی مختلف چندان تاثیری در نحوه استقرار،شکل کالبدی و تقسیم بندی فضاهای داخل حمام نداشته است.

اگرچه باید توجه شود که در مناطق گرم و خشک و خصوصا مناطق سرد، جهت حفظ حرارت داخل حمام،کالبد ساختمان تا حد ممکن در داخل زمین قرار می گرفته.در کرانه جنوبی سواحل دریای خزر به دلیل معتدل بودن اقلیم و همچنین بالا بودن سطح آبهای زیر زمینی، حمام در عمق کمتری از زمین قرار می گرفته است

این موضوع در مورد سواحل جنوبی کشور نیز صادق است زیرا در این سواحل حرارت و رطوبت هوا بسیار زیاد و سطح آبهای زیر زمینی نیز در اکثر مناطق آن بالاست.

مصالح مورد استفاده در حمام ها همواره مصالح با دوام و بام اکثر حمام های بزرگ و مهم در ایران طاق یا گنبد بوده است.اما در روستاهای کوهستانی و یا روستاهایی که امکان دسترسی به چوب آسان بوده، حمام ها غالبا با تیر چوبی و کاهگل پوشیده شده،زیرا آسانتر و اقتصادی تر بوده است.

در سواحل جنوبی دریای خزر به جهت بارندگی بسیار زیاد، بامها یا به صورت شیبدار و یا به صورت طاق و گنبد اجرا می شود.

آب و رطوبت

آب مورد نیاز حمام از آب نهرها، قنات ها و یا از آب چاه تامین می شود.در مجاور حمام هایی که از آب چاه استفاده می کردند، یک چاه حفر می شده و آب آن توسط انسان و یا یک یا دو گاو بیرون کشیده می شد.در رابطه با مورد دوم مسیری را که گاو باید طی می کرده تا آب را بالا بکشد به صورت سرازیری می کندند تا گاو نیروی کمتری را برای این کار صرف کند و دیرتر خسته شود.به این مسیر شیبدار، چهارگاو می گفتند

این آب وارد حوض شده و از آنجا توسط لوله های سفالین به نام تنبوشه به خزینه منتقل می شده است.

مواقعی که می خواستند آب خزینه را عوض کنند، آنرا خالی کرده و پس از شستشوی خزینه آب را توسط تنبوشه ها از حوض به خزینه منتقل می کردند.

تعویض آب حمام توسط بوق و بستن لنگ به قسمت ورودی و اطراف آن به اهالی و رهگذران اعلام می

شده است.

در بیشتر گرمابه ها با آن که آب جاری یا کاریزی در کنار آن می گذشته، در بام گرمابه یک خزانه ی آب جدا

نیز بوده است که بر خزانه گرم خانه سوار بوده است.آب این خزانه را از یک چاه زه به دست می آوردند.

مصالح

از آنجا که حمام ها خصوصا حمام های عمومی، مانند سایر ابنیه، جنبه استفاده عام داشته و برای استفاده نسلهای متمادی احداث می شده، لذا مصالح بکار در آن، در کلیه اقلیم های ایران، از نوع بادوام و مرغوب بوده است.بدین جهت دیوارها و طاقهای قوسی حمام عمدتا با آجر اجرا می شده.در مناطق کوهستانی و کوهپایه ای از سنگ برای بدنه حمام و از تیرچوبی و کاهگل برای پوشش بام استفاده می کردند

در حمام های مجلل،دیوارها را تا ارتفاع 1.80 متر با کاشی پوشش می دادند و مابقی را با آهک اندود می کردند.در سایر حمام ها دیوارها را نیز مانند طاقها آهک اندود می کردند و گاهی جهت زیبایی،روی آن را

آهکبری می کردند.در حمام روی کاشی ها را(بر خلاف مسجد و مدرسه که جنبه مذهبی داشته) تصاویر انسان و حیوان می کشیدند.البته از طرح های اسلیمی و گره چینی نیز استفاده می کردند.

به دلیل بارندگی زیاد،با حمام در سواحل جنوبی دریای خزر را غالبا با سفال پوشش می دادند و یا روی طاق آجری حمام را مستقیما اندود آهک می کشیدند.در سایر اقلیمهای ایران،بام حمام را نیز مانند سایر ساختمانها با کاهگل اندود می کردند و در حمام های مهم تر،روی طاق را آجر فرش می کردند

برای دیوارها و کف خزینه از ملات ساروج استفاده می کردند،ولی برای قرار دان تیان و آب بندی آن، از ساروج مخصوص این کار استفاده می شده است.این ساروج در عین چسبندگی به مصالح بدنه خزینه و صفحه مسی تیان،می بایستی قدرت تحمل حرارت تون و فشار آب را هم داشته باشد،بدون آنکه آبی را از خود عبور دهد.

روش کار اوستا داوود نواب برای ساخت ساروج

ملات ساروج مخلوطی از سفیده تخم مرغ، آهک، خاک رس و قدری موی بز و یا موی سر انسان برای جلو گیری از ترک خوردن ساروج است.این ملات را دو روز ورز می دهند و بعد آن را در زیر تین که 20 سانتی متر از اطراف آن روی پایه و آجری است می ریزند.سپس تین را روی ملات گذارده و خزینه را پر از آب می کنند

بعد ملات ساروج را به صورت لوله در آورده و شخصی باید بتواند به مدت چند دقیقه زیر آب باشد و این ملات را طوری کار بگذارد که مجیط اطراف تیان را بپوشاند و درز یا منفذی باقی نگذارد.

تین صفحه ای مقعر مسی است به قطر حدود 1 متر و به ضخامت 2 الی 3 سانتی متر و تون حمام درست در زیر آن قرار می گیرد.

دپارتمان های علمی

درباره کنسرسیوم

پنل آموزشی

آمار سایت

تعداد اعضای آنلاین : 0

تعداد کل اعضای کنسرسیوم : 1743

برای مشاهده اعضای آنلاین کلیک کنید

مراکز خدماتی و رفاهی طرف قرارداد

marakez

تعمیرذ تصویربرداری زیستی چاپ سه بعدی اعضای بدن دوره گیاهان دارویی در اهر اعضای پیوندی بدن تبریز مدرک دیپلم تبریز مدرک دیپلم بازرسی فراصوتی در تبریز استخدام دستیار دندانپزشک در تبریز امروز فیلم های آموزشی طب سنتی نبولایزر آموزش نرم افزار داروخانه کلاس تعمیر تجهیزات دندانپزشکی در ارومیه زیکا چطور ساختار جمجمه را به هم می‌ریزد؟ فلوئوروسکوپی پالس با نرخ فریم متغیر فلک امام حمل و نقل چشم مصنوعی تکنسین داروخانه بهتره یا دستیار دندانپزشک یُد رادیواكتیو آموزش پیراپزشکی در تبریز سایت مرجع مهندسی پزشکی ایران شهرک سلیمی ردیابی سلول ها مدارک نسخه پیچی فیلتر بالا گذر ورزش کاربرد لیزر در دندانپزشکی باتری انژیوگرافی سنگ، آجر، شفته آهک و ساروج بازرسی سیمان اسپکتروفتومتر متخصص ارتباطات درون شبکه آسمی دوره مهارت های هفتگانه icdl مهندسی معکوس سردر تزئینی دستیار دندانپزشکی یعنی چه مقام هفتممحصولات صنعتی نانو ذرات شوک پایه‌های پزشکی هسته‌ای معرفت جذب دستیار دندانپزشک در تهران خورشید صحرا فواید استفاده از سیستم BMS آموزش شکسته بندی در تبریز امکان ذخيره سازی اطلاعات اصول منشی گری تشخیص بیماری های قلبی بیمارستان ارتعاشات تکنیسین PC وظایف تکنسین داروخانه مایعات نافذ تستPT متالوگرافی غیر مخرب الکترو شوک schiller بازرسی قطعات خودرو چدن خاکستری

logo کنسرسیوم دانشگاهیان و متخصصان ایران - برگزاری دوره های آموزشی

حامیان کنسرسیوم ایرکاس

  • IRSME
  • RKA
  • ACS
  • IUE
  • RFTC
  • BQC
  • DNW
  • ICS
  • TUV-EMB
  • QAL
  • Ino
  • Allaiance
  • Tckit

تبلیغات در ایرکاس

دسترسی به ژورنال مقالات

az3

تصاویر اینستاگرام ایرکاس